Constructing Strebel Differentials via Belyi Maps on the Riemann Sphere

被引:0
作者
Song, Jijian [1 ]
Xu, Bin [2 ]
机构
[1] Tianjin Univ, Ctr Appl Math, 135 Yaguan Rd, Tianjin 300350, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Strebel differential; Metric ribbon graph; Dessin d'enfant; Belyi map; Cone spherical metric; MODULI SPACE;
D O I
10.1007/s40315-020-00302-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by using Belyi maps and dessin d'enfants, we construct some concrete examples of Strebel differentials with four double poles of residues 1, 1, 1, 1 on the Riemann sphere. We also prove that they have either two double zeroes or four simple zeroes. In particular, we show that they have two double zeroes if and only if their poles are coaxial; in such cases we also obtain their explicit expressions. On the other hand, for those differentials with four non-coaxial poles and whose metric ribbon graphs have edges of rational lengths, we characterize them optimally in terms of Belyi maps in the sense that the Belyi maps used here have minimal degree, and work out the explicit expressions of the five simplest ones among them. As applications, we obtain some explicit cone spherical metrics on the Riemann sphere.
引用
收藏
页码:63 / 83
页数:21
相关论文
共 13 条
  • [1] Jenkins-Strebel differentials
    Arbarello, Enrico
    Cornalba, Maurizio
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2010, 21 (02) : 115 - 157
  • [2] Girondo E., 2012, Introduction to compact Riemann surfaces and Dessins D'enfants
  • [3] HARER JL, 1988, LECT NOTES MATH, V1337, P138
  • [4] ON THE EXISTENCE OF CERTAIN GENERAL EXTREMAL METRICS
    JENKINS, JA
    [J]. ANNALS OF MATHEMATICS, 1957, 66 (03) : 440 - 453
  • [5] INTERSECTION THEORY ON THE MODULI SPACE OF CURVES AND THE MATRIX AIRY FUNCTION
    KONTSEVICH, M
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) : 1 - 23
  • [6] LOOIJENGA E, 1995, PROG MATH, V129, P369
  • [7] Masur H, 2009, Surveys in differential geometry, V14, P295
  • [8] Mulase M., 1998, Asian J. Math., V2, P11, DOI 10.4310/AJM.1998.v2.n4.a11
  • [9] Mulase M., 2002, ASIAN J MATH APPL, V6, P743, DOI DOI 10.4310/AJM.2002.v6.n4.a9
  • [10] Drawing Cone Spherical Metrics via Strebel Differentials
    Song, Jijian
    Cheng, Yiran
    Li, Bo
    Xu, Bin
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (11) : 3341 - 3363