Next generation bone tissue engineering: non-viral miR-133a inhibition using collagen-nanohydroxyapatite scaffolds rapidly enhances osteogenesis

被引:71
作者
Castano, Irene Mencia [1 ,2 ,3 ,4 ]
Curtin, Caroline M. [1 ,2 ,3 ,4 ]
Duffy, Garry P. [1 ,2 ,3 ,4 ]
O'Brien, Fergal J. [1 ,2 ,3 ,4 ]
机构
[1] RCSI, Dept Anat, Tissue Engn Res Grp, 123 St Stephens Green, Dublin 2, Ireland
[2] Coll Green, TCD, Trinity Ctr Bioengn, Dublin 2, Ireland
[3] RCSI, Adv Mat & Bioengn Res AMBER Ctr, Dublin 2, Ireland
[4] TCD, Dublin 2, Ireland
基金
欧洲研究理事会;
关键词
STEM-CELLS; POSITIVE REGULATION; DIFFERENTIATION; DELIVERY; REGENERATION; OSTEOBLASTS; MIRNAS; REPAIR;
D O I
10.1038/srep27941
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bone grafts are the second most transplanted materials worldwide at a global cost to healthcare systems valued over $30 billion every year. The influence of microRNAs in the regenerative capacity of stem cells offers vast therapeutic potential towards bone grafting; however their efficient delivery to the target site remains a major challenge. This study describes how the functionalisation of porous collagen-nanohydroxyapatite (nHA) scaffolds with miR-133a inhibiting complexes, delivered using non-viral nHA particles, enhanced human mesenchymal stem cell-mediated osteogenesis through the novel focus on a key activator of osteogenesis, Runx2. This study showed enhanced Runx2 and osteocalcin expression, as well as increased alkaline phosphatase activity and calcium deposition, thus demonstrating a further enhanced therapeutic potential of a biomaterial previously optimised for bone repair applications. The promising features of this platform offer potential for a myriad of applications beyond bone repair and tissue engineering, thus presenting a new paradigm for microRNA-based therapeutics.
引用
收藏
页数:10
相关论文
共 42 条
[1]   MiRNA inhibition in tissue engineering and regenerative medicine [J].
Beavers, Kelsey R. ;
Nelson, Christopher E. ;
Duvall, Craig L. .
ADVANCED DRUG DELIVERY REVIEWS, 2015, 88 :123-137
[2]   A novel collagen-nanohydroxyapatite microRNA-activated scaffold for tissue engineering applications capable of efficient delivery of both miR-mimics and antagomiRs to human mesenchymal stem cells [J].
Castano, Irene Mencia ;
Curtin, Caroline M. ;
Shaw, Georgina ;
Murphy, J. Mary ;
Duffy, Garry P. ;
O'Brien, Fergal J. .
JOURNAL OF CONTROLLED RELEASE, 2015, 200 :42-51
[3]   Concise Review: MicroRNA Function in Multipotent Mesenchymal Stromal Cells [J].
Clark, Elizabeth A. ;
Kalomoiris, Stefanos ;
Nolta, Jan A. ;
Fierro, Fernando A. .
STEM CELLS, 2014, 32 (05) :1074-1082
[4]   The synthesis and characterization of nanophase hydroxyapatite using a novel dispersant-aided precipitation method [J].
Cunniffe, Grainne M. ;
O'Brien, Fergal J. ;
Partap, Sonia ;
Levingstone, Tanya J. ;
Stanton, Kenneth T. ;
Dickson, Glenn R. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2010, 95A (04) :1142-1149
[5]   Development and characterisation of a collagen nano-hydroxyapatite composite scaffold for bone tissue engineering [J].
Cunniffe, Grainne M. ;
Dickson, Glenn R. ;
Partap, Sonia ;
Stanton, Kenneth T. ;
O'Brien, Fergal J. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2010, 21 (08) :2293-2298
[6]   Combinatorial Gene Therapy Accelerates Bone Regeneration: Non-Viral Dual Delivery of VEGF and BMP2 in a Collagen-Nanohydroxyapatite Scaffold [J].
Curtin, Caroline M. ;
Tierney, Erica G. ;
McSorley, Kevin ;
Cryan, Sally-Ann ;
Duffy, Garry P. ;
O'Brien, Fergal J. .
ADVANCED HEALTHCARE MATERIALS, 2015, 4 (02) :223-227
[7]   Innovative Collagen Nano-Hydroxyapatite Scaffolds Offer a Highly Efficient Non-Viral Gene Delivery Platform for Stem Cell-Mediated Bone Formation [J].
Curtin, Caroline M. ;
Cunniffe, Grainne M. ;
Lyons, Frank G. ;
Bessho, Kazuhisa ;
Dickson, Glenn R. ;
Duffy, Garry P. ;
O'Brien, Fergal J. .
ADVANCED MATERIALS, 2012, 24 (06) :749-+
[8]   REPAIR OF CRITICAL-SIZED BONE DEFECTS WITH ANTI-MIR-31-EXPRESSING BONE MARROW STROMAL STEM CELLS AND POLY(GLYCEROL SEBACATE) SCAFFOLDS [J].
Deng, Yuan ;
Bi, Xiaoping ;
Zhou, Huifang ;
You, Zhengwei ;
Wang, Yadong ;
Gu, Ping ;
Fan, Xianqun .
EUROPEAN CELLS & MATERIALS, 2014, 27 :13-25
[9]   The role of miR-31-modified adipose tissue-derived stem cells in repairing rat critical-sized calvarial defects [J].
Deng, Yuan ;
Zhou, Huifang ;
Zou, Duohong ;
Xie, Qing ;
Bi, Xiaoping ;
Gu, Ping ;
Fan, Xianqun .
BIOMATERIALS, 2013, 34 (28) :6717-6728
[10]  
Duffy GP, 2009, TISSUE ENG PT A, V15, P2459, DOI [10.1089/ten.tea.2008.0341, 10.1089/ten.TEA.2008.0341]