Research Progress in High-Throughput Screening of CO2 Reduction Catalysts

被引:18
作者
Wu, Qinglin [1 ,2 ]
Pan, Meidie [3 ]
Zhang, Shikai [1 ,2 ]
Sun, Dongpeng [1 ,2 ]
Yang, Yang [1 ,2 ]
Chen, Dong [1 ,2 ,3 ,4 ]
Weitz, David A. [5 ]
Gao, Xiang [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Energy Engn, Hangzhou 310003, Peoples R China
[2] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310003, Peoples R China
[3] Zhejiang Univ, Affiliated Hosp 1, Sch Med, Dept Med Oncol, Hangzhou 310003, Peoples R China
[4] Zhejiang Univ, Coll Chem & Biol Engn, Zhejiang Key Lab Smart Biomat, Hangzhou 310027, Peoples R China
[5] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
CO2; reduction; electrocatalyst; high-throughput computing; machine learning; high-throughput screening; in situ characterization; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; ACTIVE-SITES; THERMOCHEMICAL CONVERSION; ELECTROCATALYSTS; DISCOVERY; ALLOYS; HYDROGENATION; H-2; SELECTIVITY;
D O I
10.3390/en15186666
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The conversion and utilization of carbon dioxide (CO2) have dual significance for reducing carbon emissions and solving energy demand. Catalytic reduction of CO2 is a promising way to convert and utilize CO2. However, high-performance catalysts with excellent catalytic activity, selectivity and stability are currently lacking. High-throughput methods offer an effective way to screen high-performance CO2 reduction catalysts. Here, recent advances in high-throughput screening of electrocatalysts for CO2 reduction are reviewed. First, the mechanism of CO2 reduction reaction by electrocatalysis and potential catalyst candidates are introduced. Second, high-throughput computational methods developed to accelerate catalyst screening are presented, such as density functional theory and machine learning. Then, high-throughput experimental methods are outlined, including experimental design, high-throughput synthesis, in situ characterization and high-throughput testing. Finally, future directions of high-throughput screening of CO2 reduction electrocatalysts are outlooked. This review will be a valuable reference for future research on high-throughput screening of CO2 electrocatalysts.
引用
收藏
页数:18
相关论文
共 115 条
[1]   Catalyst synthesis by continuous coprecipitation under micro-fluidic conditions: Application to the preparation of catalysts for methanol synthesis from CO2/H2 [J].
Angelo, Laetitia ;
Girleanu, Maria ;
Ersen, Ovidiu ;
Serra, Christophe ;
Parkhomenko, Ksenia ;
Roger, Anne-Cecile .
CATALYSIS TODAY, 2016, 270 :59-67
[2]   Highly Selective Reduction of Carbon Dioxide to Methane on Novel Mesoporous Rh Catalysts [J].
Arandiyan, Hamidreza ;
Kani, Kenya ;
Wang, Yuan ;
Jiang, Bo ;
Kim, Jeonghun ;
Yoshino, Masahiro ;
Rezaei, Mehran ;
Rowan, Alan E. ;
Dai, Hongxing ;
Yamauchi, Yusuke .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (30) :24963-24968
[3]   Mechanistic Insights into the Reduction of CO2 on Tin Electrodes using in Situ ATR-IR Spectroscopy [J].
Baruch, Maor F. ;
Pander, James E., III ;
White, James L. ;
Bocarsly, Andrew B. .
ACS CATALYSIS, 2015, 5 (05) :3148-3156
[4]   Complex-Solid-Solution Electrocatalyst Discovery by Computational Prediction and High-Throughput Experimentation** [J].
Batchelor, Thomas A. A. ;
Loeffler, Tobias ;
Xiao, Bin ;
Krysiak, Olga A. ;
Strotkoetter, Valerie ;
Pedersen, Jack K. ;
Clausen, Christian M. ;
Savan, Alan ;
Li, Yujiao ;
Schuhmann, Wolfgang ;
Rossmeisl, Jan ;
Ludwig, Alfred .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (13) :6932-6937
[5]   A mobile robotic chemist [J].
Burger, Benjamin ;
Maffettone, Phillip M. ;
Gusev, Vladimir V. ;
Aitchison, Catherine M. ;
Bai, Yang ;
Wang, Xiaoyan ;
Li, Xiaobo ;
Alston, Ben M. ;
Li, Buyi ;
Clowes, Rob ;
Rankin, Nicola ;
Harris, Brandon ;
Sprick, Reiner Sebastian ;
Cooper, Andrew I. .
NATURE, 2020, 583 (7815) :237-+
[6]   In Situ Characterization for Boosting Electrocatalytic Carbon Dioxide Reduction [J].
Cao, Xueying ;
Tan, Dongxing ;
Wulan, Bari ;
Hui, K. S. ;
Hui, K. N. ;
Zhang, Jintao .
SMALL METHODS, 2021, 5 (10)
[7]   Zn2SnxTi1-xO4 Continuous Solid-Solution Photocatalyst for Efficient Photocatalytic CO2 Conversion into Solar Fuels [J].
Chai, Yao ;
Li, Li ;
Shen, Jinni ;
Zhang, Yongfan ;
Liang, Jun .
ACS APPLIED ENERGY MATERIALS, 2022, 5 (03) :3748-3756
[8]   Low temperature hydrogenation of carbon dioxide into formaldehyde in liquid media [J].
Chan, Fan Liang ;
Altinkaya, Garen ;
Fung, Nicholas ;
Tanksale, Akshat .
CATALYSIS TODAY, 2018, 309 :242-247
[9]   Millifluidics, microfluidics, and nanofluidics: manipulating fluids at varying length scales [J].
Chen, L. ;
Yang, C. ;
Xiao, Y. ;
Yan, X. ;
Hu, L. ;
Eggersdorfer, M. ;
Chen, D. ;
Weitz, D. A. ;
Ye, F. .
MATERIALS TODAY NANO, 2021, 16
[10]   Boosting electrocatalytic activity for CO2 reduction on nitrogen-doped carbon catalysts by co-doping with phosphorus [J].
Chen, Shuo ;
Liu, Tianfu ;
Olanrele, Samson O. ;
Lian, Zan ;
Si, Chaowei ;
Chen, Zhimin ;
Li, Bo .
JOURNAL OF ENERGY CHEMISTRY, 2021, 54 :143-150