Diagnostic charting of panoramic radiography using deep-learning artificial intelligence system

被引:53
作者
Basaran, Melike [1 ]
Celik, Ozer [2 ,5 ]
Bayrakdar, Ibrahim Sevki [3 ,5 ]
Bilgir, Elif [4 ]
Orhan, Kaan [6 ,7 ]
Odabas, Alper [8 ]
Aslan, Ahmet Faruk [2 ]
Jagtap, Rohan [9 ]
机构
[1] Kutahya Hlth Sci Univ, Dept Oral & Maxillofacial Radiol, Fac Dent, Kutahya, Turkey
[2] Eskisehir Osmangazi Univ, Fac Sci, Dept Math Comp, Eskisehir, Turkey
[3] Eskisehir Osmangazi Univ, Fac Dent, Dept Oral & Maxillofacial Radiol, TR-26240 Eskisehir, Turkey
[4] Eskisehir Osmangazi Univ, Dept Oral & Maxillofacial Radiol, Fac Dent, Eskisehir, Turkey
[5] Eskisehir Osmangazi Univ, Ctr Res & Applicat Comp Aided Diag & Treatment Hl, Eskisehir, Turkey
[6] Ankara Univ, Fac Dent, Dept Oral & Maxillofacial Radiol, Ankara, Turkey
[7] Ankara Univ, Med Design Applicat & Res Ctr MEDITAM, Ankara, Turkey
[8] Eskisehir Osmangazi Univ, Dept Math & Comp Sci, Fac Sci, Eskisehir, Turkey
[9] Univ Mississippi, Med Ctr, Sch Dent, Div Oral & Maxillofacial Radiol,Dept Care Plannin, Jackson, MS USA
关键词
Artificial intelligence; Deep-learning; Dentistry; Panoramic radiography; NEURAL-NETWORK; CLASSIFICATION; TEETH; REGION;
D O I
10.1007/s11282-021-00572-0
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Objectives The goal of this study was to develop and evaluate the performance of a new deep-learning (DL) artificial intelligence (AI) model for diagnostic charting in panoramic radiography. Methods One thousand eighty-four anonymous dental panoramic radiographs were labeled by two dento-maxillofacial radiologists for ten different dental situations: crown, pontic, root-canal treated tooth, implant, implant-supported crown, impacted tooth, residual root, filling, caries, and dental calculus. AI Model CranioCatch, developed in Eskisehir, Turkey and based on a deep CNN method, was proposed to be evaluated. A Faster R-CNN Inception v2 (COCO) model implemented with the TensorFlow library was used for model development. The assessment of AI model performance was evaluated with sensitivity, precision, and F1 scores. Results When the performance of the proposed AI model for detecting dental conditions in panoramic radiographs was evaluated, the best sensitivity values were obtained from the crown, implant, and impacted tooth as 0.9674, 0.9615, and 0.9658, respectively. The worst sensitivity values were obtained from the pontic, caries, and dental calculus, as 0.7738, 0.3026, and 0.0934, respectively. The best precision values were obtained from pontic, implant, implant-supported crown as 0.8783, 0.9259, and 0.8947, respectively. The worst precision values were obtained from residual root, caries, and dental calculus, as 0.6764, 0.5096, and 0.1923, respectively. The most successful F1 Scores were obtained from the implant, crown, and implant-supported crown, as 0.9433, 0.9122, and 0.8947, respectively. Conclusion The proposed AI model has promising results at detecting dental conditions in panoramic radiographs, except for caries and dental calculus. Thanks to the improvement of AI models in all areas of dental radiology, we predict that they will help physicians in panoramic diagnosis and treatment planning, as well as digital-based student education, especially during the pandemic period.
引用
收藏
页码:363 / 369
页数:7
相关论文
共 26 条
[1]   An artificial intelligence system using machine-learning for automatic detection and classification of dental restorations in panoramic radiography [J].
Abdalla-Aslan, Ragda ;
Yeshua, Talia ;
Kabla, Daniel ;
Leichter, Isaac ;
Nadler, Chen .
ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2020, 130 (05) :593-602
[2]   Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique [J].
Ariji, Yoshiko ;
Yanashita, Yudai ;
Kutsuna, Syota ;
Muramatsu, Chisako ;
Fukuda, Motoki ;
Kise, Yoshitaka ;
Nozawa, Michihito ;
Kuwada, Chiaki ;
Fujita, Hiroshi ;
Katsumata, Akitoshi ;
Ariji, Eiichiro .
ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2019, 128 (04) :424-430
[3]  
CHEN H, SCI REP 2019, V9, P3840
[4]   An artificial multilayer perceptron neural network for diagnosis of proximal dental caries [J].
Devito, Karina Lopes ;
Barbosa, Flavio de Souza ;
Felippe Filho, Waldir Neme .
ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY AND ENDODONTOLOGY, 2008, 106 (06) :879-884
[5]   Deep Learning for the Radiographic Detection of Apical Lesions [J].
Ekert, Thomas ;
Krois, Joachim ;
Meinhold, Leonie ;
Elhennawy, Karim ;
Emara, Ramy ;
Golla, Tatiana ;
Schwendicke, Falk .
JOURNAL OF ENDODONTICS, 2019, 45 (07) :917-922
[6]   Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography [J].
Fukuda, Motoki ;
Inamoto, Kyoko ;
Shibata, Naoki ;
Ariji, Yoshiko ;
Yanashita, Yudai ;
Kutsuna, Shota ;
Nakata, Kazuhiko ;
Katsumata, Akitoshi ;
Fujita, Hiroshi ;
Ariji, Eiichiro .
ORAL RADIOLOGY, 2020, 36 (04) :337-343
[7]   A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography [J].
Hiraiwa, Teruhiko ;
Ariji, Yoshiko ;
Fukuda, Motoki ;
Kise, Yoshitaka ;
Nakata, Kazuhiko ;
Katsumata, Akitoshi ;
Fujita, Hiroshi ;
Ariji, Eiichiro .
DENTOMAXILLOFACIAL RADIOLOGY, 2019, 48 (03)
[8]   The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review [J].
Hung, Kuofeng ;
Montalvao, Carla ;
Tanaka, Ray ;
Kawai, Taisuke ;
Bornstein, Michael M. .
DENTOMAXILLOFACIAL RADIOLOGY, 2020, 49 (01)
[9]  
Khan H., 2020, ORAL SURG ORAL MED O
[10]  
Kuang W, 2008, IITA 08 P 2 INT S IN, P20