Feature space and label space selection based on Error-correcting output codes for partial label learning

被引:13
作者
Lin, Guang-Yi [1 ]
Xiao, Zi-Yang [1 ]
Liu, Jia-Tong [1 ]
Wang, Bei-Zhan [1 ]
Liu, Kun-Hong [1 ]
Wu, Qing-Qiang [1 ]
机构
[1] Xiamen Univ, Sch Informat, Xiamen, Fujian, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Partial label learning; Error-Correcting Output Codes (ECOC); Feature space; Label space; CLASSIFICATION; DESIGN; ECOC; ENSEMBLE;
D O I
10.1016/j.ins.2021.12.093
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Partial label learning (PLL) is a type of weakly supervised learning. This paper proposes a new heuristic algorithm for Partial Label learning through the combination of Feature space And Label space using Error-correcting output codes (PL-FALE for short). In the proposed framework, the feature space of different training sample subsets is exploited to generate diverse positive group and negative group pairs by the divide-and-conquer strategy. Then, the training sample label space is exploited to deal with the partial label overlap in every group pair. A set of experiments are conducted on nine controlled UCI datasets and five real-world datasets, and the experimental results show that PL-FALE can improve the classification performance by utilizing the information embedded in the feature space and label space in most cases. Also, the proposed algorithm achieves more stable performance than other ECOC-based PLL algorithms. The source code of PL-FALE is publicly available for non-commercial and research use at: https://github.com/xiaoziyang1/plfale1. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:341 / 359
页数:19
相关论文
共 49 条
[1]   Minimal design of error-correcting output codes [J].
Angel Bautista, Miguel ;
Escalera, Sergio ;
Baro, Xavier ;
Radeva, Petia ;
Vitria, Jordi ;
Pujol, Oriol .
PATTERN RECOGNITION LETTERS, 2012, 33 (06) :693-702
[2]  
[Anonymous], 2008, P 1 ACM INT C MULT I
[3]  
[Anonymous], 2011, ACM T INTEL SYST TEC, DOI DOI 10.1145/1961189.1961199
[4]   Acoustic classification of multiple simultaneous bird species: A multi-instance multi-label approach [J].
Briggs, Forrest ;
Lakshminarayanan, Balaji ;
Neal, Lawrence ;
Fern, Xiaoli Z. ;
Raich, Raviv ;
Hadley, Sarah J. K. ;
Hadley, Adam S. ;
Betts, Matthew G. .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2012, 131 (06) :4640-4650
[5]   Learning from Ambiguously Labeled Face Images [J].
Chen, Ching-Hui ;
Patel, Vishal M. ;
Chellappa, Rama .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (07) :1653-1667
[6]   Feature selection for imbalanced data based on neighborhood rough sets [J].
Chen, Hongmei ;
Li, Tianrui ;
Fan, Xin ;
Luo, Chuan .
INFORMATION SCIENCES, 2019, 483 :1-20
[7]   Ambiguously Labeled Learning Using Dictionaries [J].
Chen, Yi-Chen ;
Patel, Vishal M. ;
Chellappa, Rama ;
Phillips, P. Jonathon .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2014, 9 (12) :2076-2088
[8]  
Cour T, 2011, J MACH LEARN RES, V12, P1501
[9]   On the learnability and design of output codes for multiclass problems [J].
Crammer, K ;
Singer, Y .
MACHINE LEARNING, 2002, 47 (2-3) :201-233
[10]  
Dietterich T. G., 1995, Journal of Artificial Intelligence Research, V2, P263