Stochastic optimization of parabolic PDE systems under chance constraints with application to temperature control of a bar

被引:3
作者
Schmidt, Patrick [2 ]
Geletu, Abebe [1 ]
Li, Pu [1 ]
机构
[1] TU Ilmenau, Inst Informat & Automatisierungstech, Fachgebiet Simulat & Optimale Prozesse, Ilmenau, Germany
[2] TU Chemnitz, Inst Automatisierung, Regelungstech & Syst Dynam, Chemnitz, Germany
关键词
optimization under uncertainties; chance constrained optimization; optimization with partial differential equation constraints; PARTIAL-DIFFERENTIAL-EQUATIONS; RANDOM-COEFFICIENTS; INPUT DATA; COLLOCATION; UNCERTAINTY; CHAOS;
D O I
10.1515/auto-2018-0011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The state variables of many engineering processes are both space and time dependent. Such processes are frequently described with parabolic partial differential equations (PDEs). In most practical applications there exist uncertainties which are characterized through model parameters and random disturbances. The optimization of parabolic PDE systems with state constraints poses a great challenge. In this study, such state constraints are modeled as chance constraints. The stochastic optimization problem formulated in this way is solved by the inner and outer approximation method. The effectiveness and efficiency of the proposed approach is demonstrated by the temperature control of a bar with an uncertain heat transfer coefficient.
引用
收藏
页码:975 / 985
页数:11
相关论文
共 47 条
[1]  
[Anonymous], 2013, Stochastic Programming
[2]  
Atwal P., 2012, CONSTRAINED OPTIMIZA, V160, P215, DOI DOI 10.1007/978-3-0348-0133-1_12
[3]   Galerkin finite element approximations of stochastic elliptic partial differential equations [J].
Babuska, I ;
Tempone, R ;
Zouraris, GE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :800-825
[4]   A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data [J].
Babuska, Ivo ;
Nobile, Fabio ;
Tempone, Raul .
SIAM REVIEW, 2010, 52 (02) :317-355
[5]   Multilevel Monte Carlo method for parabolic stochastic partial differential equations [J].
Barth, Andrea ;
Lang, Annika ;
Schwab, Christoph .
BIT NUMERICAL MATHEMATICS, 2013, 53 (01) :3-27
[6]   A POD framework to determine robust controls in PDE optimization [J].
Borzi, A. ;
von Winckel, G. .
COMPUTING AND VISUALIZATION IN SCIENCE, 2011, 14 (03) :91-103
[7]   Multigrid and sparse-grid schemes for elliptic control problems with random coefficients [J].
Borzi, A. .
COMPUTING AND VISUALIZATION IN SCIENCE, 2010, 13 (04) :153-160
[8]   MULTIGRID METHODS AND SPARSE-GRID COLLOCATION TECHNIQUES FOR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH RANDOM COEFFICIENTS [J].
Borzi, A. ;
von Winckel, G. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (03) :2172-2192
[9]  
BORZI A., 2010, GAMM-Mit., V33, P230, DOI DOI 10.1002/GAMM.201010017
[10]   Multigrid Solution of a Lavrentiev-Regularized State-Constrained Parabolic Control Problem [J].
Borzi, Alfio ;
Gonzalez Andrade, Sergio .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2012, 5 (01) :1-18