On the eigenvalues of weighted p(x)-Laplacian on RN

被引:14
作者
Benouhiba, Nawel [1 ]
机构
[1] Badji Mokhtar Univ, Dept Math, El Hadjar Annaba 23000, Algeria
关键词
p(x)-Laplacian operator; Variable exponent Lebesgue-Sobolev space; Eigenvalue; Electrorheological fluids; SOBOLEV EMBEDDINGS; GENERALIZED LEBESGUE; SPACES;
D O I
10.1016/j.na.2010.08.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper, following the theory of partial differential equations on variable exponent Sobolev spaces, is mainly concerned with the p(x)-Laplacian eigenvalue problem with a weight function on R-N. The results show that the spectrum of such problems contains a continuous family of eigenvalues. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:235 / 243
页数:9
相关论文
共 24 条
[1]  
ALLEGRETTO W, 2003, FUNKC EKVACIOJ-SER I, V38, P233
[2]  
[Anonymous], 2002, Electrorheological Fluids: Modeling and Mathematical Theory
[4]  
Diening L, 2004, MATH INEQUAL APPL, V7, P245
[5]   Resonance problems for the p-Laplacian [J].
Drábek, P ;
Robinson, SB .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 169 (01) :189-200
[6]   DENSITY OF SMOOTH FUNCTIONS IN W(K,P(X))(OMEGA) [J].
EDMUNDS, DE ;
RAKOSNIK, J .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1992, 437 (1899) :229-236
[7]   Sobolev embeddings with variable exponent [J].
Edmunds, DE ;
Rákosník, J .
STUDIA MATHEMATICA, 2000, 143 (03) :267-293
[8]   Eigenvalues of the p(x)-Laplacian Neumann problems [J].
Fan, Xianling .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (10) :2982-2992
[9]  
Fan XL, 2010, MATH INEQUAL APPL, V13, P123
[10]   Existence of solutions for p(x)-Laplacian Dirichlet problem [J].
Fan, XL ;
Zhang, QH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (08) :1843-1852