Strength Analysis of Syntactic Foams Using a Three-Dimensional Continuum Damage Finite Element Model

被引:4
作者
Shan, Yejie [1 ,2 ]
Nian, Guodong [1 ,2 ]
Xu, Qiang [1 ,2 ,3 ]
Tao, Weiming [1 ,2 ,3 ]
Qu, Shaoxing [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Dept Engn Mech, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sch Aeronaut & Astronaut, Res Ctr Composites & Struct, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhejiang Univ, Key Lab Aerosp Numer Simulat & Validat, Minist Educ China, Hangzhou 310027, Zhejiang, Peoples R China
来源
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME | 2015年 / 82卷 / 02期
基金
中国国家自然科学基金;
关键词
syntactic foams; strength; finite element analysis; TENSILE PROPERTIES; ELASTIC PROPERTIES; FIBER REINFORCEMENT; THERMAL-PROPERTIES; NUMERICAL-ANALYSIS; WALL THICKNESS; RADIUS RATIO; COMPOSITES; NANOCLAY; BEHAVIOR;
D O I
10.1115/1.4029387
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The failure behavior of the syntactic foams is investigated based on a three-dimensional (3D) micromechanical finite element (FE) model, by varying the volume fraction, the wall thickness of the hollow particles, and the interfacial strength. The maximum principal stress criterion is adopted to determine the state (damaged or undamaged) for both interface and matrix. Material property degradation is used to describe the mechanical behavior of those damaged elements. The current model can reasonably predict the tensile strength of the syntactic foams with high volume fractions (40%-60%). The failure mechanism of the syntactic foam under uniaxial tension is captured by analyzing the stress-strain curves and the contours of damaging evolution process. Results from the quantitative simulations demonstrate that the tensile strength of the syntactic foam can be improved effectively by enhancing the interfacial strength.
引用
收藏
页数:7
相关论文
共 46 条
[1]   INTERLAMINAR INTERFACE MODELING FOR THE PREDICTION OF DELAMINATION [J].
ALLIX, O ;
LADEVEZE, P .
COMPOSITE STRUCTURES, 1992, 22 (04) :235-242
[2]   On the elastic behavior of syntactic foams [J].
Bardella, L ;
Genna, F .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2001, 38 (40-41) :7235-7260
[3]   Tensile properties of carbon nanofiber reinforced multiscale syntactic foams [J].
Colloca, Michele ;
Gupta, Nikhil ;
Porfiri, Maurizio .
COMPOSITES PART B-ENGINEERING, 2013, 44 (01) :584-591
[4]   FORMULATION, IDENTIFICATION AND USE OF INTERFACE MODELS IN THE NUMERICAL-ANALYSIS OF COMPOSITE DELAMINATION [J].
CORIGLIANO, A .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1993, 30 (20) :2779-2811
[5]   Fatigue of hybrid glass/carbon composites: 3D computational studies [J].
Dai, Gaoming ;
Mishnaevsky, Leon, Jr. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2014, 94 :71-79
[6]   SOME APPLICATIONS OF PLASTICITY THEORY TO STATICS OF SYNTACTIC FOAM [J].
DERUNTZ, JA .
JOURNAL OF APPLIED MECHANICS, 1971, 38 (01) :23-&
[7]   Three-phase syntactic foams: structure-property relationships [J].
Gladysz, G. M. ;
Perry, B. ;
Mceachen, G. ;
Lula, J. .
JOURNAL OF MATERIALS SCIENCE, 2006, 41 (13) :4085-4092
[8]   A PREDICTIVE MODEL FOR PARTICULATE-FILLED COMPOSITE-MATERIALS .1. HARD PARTICLES [J].
GUILD, FJ ;
YOUNG, RJ .
JOURNAL OF MATERIALS SCIENCE, 1989, 24 (01) :298-306
[9]   Enhancement of energy absorption in syntactic foams by nanoclay incorporation for sandwich core applications [J].
Gupta, N ;
Maharsia, R .
APPLIED COMPOSITE MATERIALS, 2005, 12 (3-4) :247-261
[10]   Compressive fracture features of syntactic foams-microscopic examination [J].
Gupta, N ;
Woldesenbet, E ;
Kishore .
JOURNAL OF MATERIALS SCIENCE, 2002, 37 (15) :3199-3209