A Metal-Organic Framework (MOF) Fenton Nanoagent-Enabled Nanocatalytic Cancer Therapy in Synergy with Autophagy Inhibition

被引:309
作者
Yang, Bowen [1 ,2 ]
Ding, Li [1 ]
Yao, Heliang [1 ]
Chen, Yu [1 ]
Shi, Jianlin [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金; 国家重点研发计划;
关键词
autophagy; cancer therapy; metal-organic framework; nanocatalytic medicine; reactive oxygen species; HYDROGEN-PEROXIDE; MODULATION; BIOLOGY; CELLS; ROS; POLY(ADP-RIBOSE); CHLOROQUINE; MECHANISMS; INDUCTION; CHEMISTRY;
D O I
10.1002/adma.201907152
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanocatalytic medicine has been developed recently to trigger intratumoral generation of highly toxic reactive oxygen species (ROS) for cancer therapy, which, unfortunately, suffers from compromised therapeutic efficacy due to a self-protective mechanism, autophagy, of cancer cells to mitigate oxidative damage. In this work, during the efforts of ROS generation by nanocatalytic medicine, a pharmacological autophagy inhibition strategy is implemented for augmenting ROS-induced oxidative damage for synergetic cancer therapy. An iron-containing metal-organic framework [MOF(Fe)] nanocatalyst as a peroxidase mimic is used to catalyze the generation of highly oxidizing center dot OH radicals specifically within cancer cells, while chloroquine is applied to deacidify lysosomes and inhibit autophagy, cutting off the self-protection pathway under severe oxidative stress. Cancer cells fail to extract their components to detoxicate and strengthen themselves, finally succumbing to the ROS-induced oxidative damage during nanocatalytic therapy. Both in vitro and in vivo results demonstrate the synergy between nanocatalytic therapy and autophagy inhibition, suggesting that such a combined strategy is applicable to amplify tumor-specific oxidative damage and may be informative to future design of therapeutic regimen.
引用
收藏
页数:12
相关论文
共 54 条
[1]   Basicities of the aminoquinolines - Comparison with the aminoacridines and aminopyridines [J].
Albert, A ;
Goldacre, R .
NATURE, 1944, 153 :467-469
[2]   High-throughput assisted rationalization of the formation of metal organic frameworks in the iron(III) aminoterephthalate solvothermal system [J].
Bauer, Sebastian ;
Serre, Christian ;
Devic, Thomas ;
Horcajada, Patricia ;
Marrot, Jerome ;
Ferey, Gerard ;
Stock, Norbert .
INORGANIC CHEMISTRY, 2008, 47 (17) :7568-7576
[3]   Modulation of intracellular ROS levels by TIGAR controls autophagy [J].
Bensaad, Karim ;
Cheung, Eric C. ;
Vousden, Karen H. .
EMBO JOURNAL, 2009, 28 (19) :3015-3026
[4]   p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death [J].
Bjorkoy, G ;
Lamark, T ;
Brech, A ;
Outzen, H ;
Perander, M ;
Overvatn, A ;
Stenmark, H ;
Johansen, T .
JOURNAL OF CELL BIOLOGY, 2005, 171 (04) :603-614
[5]  
BOYER MJ, 1992, CANCER RES, V52, P4441
[6]   THE PECKING ORDER OF FREE-RADICALS AND ANTIOXIDANTS - LIPID-PEROXIDATION, ALPHA-TOCOPHEROL, AND ASCORBATE [J].
BUETTNER, GR .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1993, 300 (02) :535-543
[7]   Regulation of cancer cell metabolism [J].
Cairns, Rob A. ;
Harris, Isaac S. ;
Mak, Tak W. .
NATURE REVIEWS CANCER, 2011, 11 (02) :85-95
[8]   DRAM, a p53-induced modulator of autophagy, is critical for apoptosis [J].
Crighton, Diane ;
Wilkinson, Simon ;
O'Prey, Jim ;
Syed, Nelofer ;
Smith, Paul ;
Harrison, Paul R. ;
Gasco, Milena ;
Garrone, Ornella ;
Crook, Tim ;
Ryan, Kevin M. .
CELL, 2006, 126 (01) :121-134
[9]   ROS as signalling molecules:: mechanisms that generate specificity in ROS homeostasis [J].
D'Autreaux, Benoit ;
Toledano, Michel B. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2007, 8 (10) :813-824
[10]  
Dickinson BC, 2011, NAT CHEM BIOL, V7, P504, DOI [10.1038/nchembio.607, 10.1038/NCHEMBIO.607]