A Physics-Based Improved Cauer-Type Thermal Equivalent Circuit for IGBT Modules

被引:75
作者
Wang, Ze [1 ]
Qiao, Wei [1 ]
机构
[1] Univ Nebraska, Dept Elect & Comp Engn, Power & Energy Syst Lab, Lincoln, NE 68588 USA
基金
美国国家科学基金会;
关键词
Cauer-type thermal equivalent circuit; insulated-gate bipolar transistor; lumped-capacitance approximation error; transient thermal behavior; MODEL; PATH;
D O I
10.1109/TPEL.2016.2539208
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A physics-based Cauer-type thermal equivalent circuit (TEC) can be constructed for an insulated-gate bipolar transistor (IGBT) module based on its geometry. In the conventional Cauer-type TEC, each layer of the IGBT module is modeled as a lump with the uniformly distributed temperature. However, this method oversimplified the transient thermal behavior of the IGBT module, leading to unsatisfactory transient junction temperature estimation. Based on a new concept of lumped-capacitance approximation error, this letter proposes a method to determine the number of sublayers that a layer in an IGBT module should be subdivided. For the bulky-baseplate layer, an analytical expression of its thermal impedance is derived and simplified to a first-order transfer function, which can be represented by a thermal resistance and capacitance pair in the TEC. The proposed Cauer-type TEC model is much more accurate than the conventional Cauer-type TEC model for the transient junction temperature estimation of IGBT modules with a slightly increased order only. The improvement of the proposed model over the conventional Cauer-type TEC model is validated by comparing with a finite element analysis model for a commercial IGBT module using simulation studies.
引用
收藏
页码:6781 / 6786
页数:6
相关论文
共 11 条
[1]   Lumped Dynamic Electrothermal Model of IGBT Module of Inverters [J].
Batard, Christophe ;
Ginot, Nicolas ;
Antonios, Joe .
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2015, 5 (03) :355-364
[2]   Transient Electrothermal Simulation of Power Semiconductor Devices [J].
Du, Bin ;
Hudgins, Jerry L. ;
Santi, Enrico ;
Bryant, Angus T. ;
Palmer, Patrick R. ;
Mantooth, Homer Alan .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2010, 25 (01) :237-248
[3]   A Real-Time Thermal Model for Monitoring of Power Semiconductor Devices [J].
Gachovska, Tanya Kirilova ;
Tian, Bo ;
Hudgins, Jerry L. ;
Qiao, Wei ;
Donlon, John F. .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2015, 51 (04) :3361-3367
[4]  
Lutz J, 2011, SEMICONDUCTOR POWER DEVICES: PHYSICS, CHARACTERISTICS, RELIABILITY, P1, DOI 10.1007/978-3-642-11125-9
[5]   A new approach to the dynamic thermal modelling of semiconductor packages [J].
Masana, FN .
MICROELECTRONICS RELIABILITY, 2001, 41 (06) :901-912
[6]   FINE-STRUCTURE OF HEAT-FLOW PATH IN SEMICONDUCTOR-DEVICES - A MEASUREMENT AND IDENTIFICATION METHOD [J].
SZEKELY, V ;
VANBIEN, T .
SOLID-STATE ELECTRONICS, 1988, 31 (09) :1363-1368
[7]   Thermal dynamics and the time constant domain [J].
Székely, V ;
Rencz, M .
IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2000, 23 (03) :587-594
[8]   A fixed-angle heat spreading model for dynamic thermal characterization of rear-cooled substrates [J].
Vermeersch, Bjorn ;
De Mey, Gilbert .
TWENTY-THIRD ANNUAL IEEE SEMICONDUCTOR THERMAL MEASUREMENT AND MANAGEMENT SYMPOSIUM, PROCEEDINGS 2007, 2007, :95-+
[9]  
Wang Z, 2014, APPL POWER ELECT CO, P513, DOI 10.1109/APEC.2014.6803357
[10]  
Wu R, 2014, IEEE ENER CONV, P2901, DOI 10.1109/ECCE.2014.6953793