Generalized Bellman-Hamilton-Jacobi optimality conditions for a control problem with a boundary condition

被引:9
作者
Dempster, MAH [1 ]
Ye, JJ [1 ]
机构
[1] UNIV VICTORIA,DEPT MATH & STAT,VICTORIA,BC V8W 3P4,CANADA
关键词
Clarke generalized gradient; Bellman-Hamilton-Jacobi equation; necessary and sufficient optimality conditions;
D O I
10.1007/BF01204702
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study conditions for optimality of a deterministic control problem where the state of the system is required to stop at the boundary. Using the Clarke generalized gradient, we refine the classical verification theorem and show that it is not only sufficient but also necessary for optimality. It is also shown that the solution to the generalized Bellman-Jacobi-Hamilton equation involving the Clarke generalized gradient is unique among the class of regular functions.
引用
收藏
页码:211 / 225
页数:15
相关论文
共 20 条
[1]  
[Anonymous], T AM MATH SOC
[2]   EXIT TIME PROBLEMS IN OPTIMAL-CONTROL AND VANISHING VISCOSITY METHOD [J].
BARLES, G ;
PERTHAME, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (05) :1133-1148
[3]  
BOLTYANSKII V. G., 1966, SIAM J. Control, V4, P326, DOI [10.1137/0304027, DOI 10.1137/0304027]
[4]   SOME CHARACTERIZATIONS OF OPTIMAL TRAJECTORIES IN CONTROL-THEORY [J].
CANNARSA, P ;
FRANKOWSKA, H .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (06) :1322-1347
[5]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[6]   LOCAL OPTIMALITY CONDITIONS AND LIPSCHITZIAN SOLUTIONS TO THE HAMILTON-JACOBI EQUATION [J].
CLARKE, FH ;
VINTER, RB .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1983, 21 (06) :856-870
[7]  
CLARKE FH, 1981, SYSTEM MODELING OPTI, V38, P88
[8]  
COURANT R, 1962, METHODS MATH PHYSICS, V2
[9]  
Dempster M. A. H., 1992, STOCHASTICS STOCHAST, V40, P125, DOI DOI 10.1080/17442509208833785
[10]  
DEMPSTER MAH, 1991, P IMP COLL WORKSH AP