Ultrathin Single-Walled Carbon Nanotube Network Framed Graphene Hybrids

被引:17
作者
Wang, Rui [1 ]
Hong, Tu [2 ]
Xe, Ya-Qiong [1 ,2 ]
机构
[1] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA
基金
美国国家科学基金会;
关键词
CVD; graphene; single-walled carbon nanotube; photocurrent; PHOTONICS; GROWTH; OPTOELECTRONICS; TRANSPARENT; ELECTRONICS; FILMS; AREA; GAS;
D O I
10.1021/am5082843
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene and single-walled carbon nanotubes (SWNTs) have shown superior potential in electronics and optoelectronics because of their excellent thermal, mechanical, electronic, and optical properties. Here, a simple method is developed to synthesize ultrathin SWNT-graphene films through chemical vapor deposition. These novel two-dimensional hybrids show enhanced mechanical strength that allows them to float on water without polymer supporting layers. Characterizations by Raman spectroscopy and transmission electron microscopy indicate that SWNTs can interlace as a concrete backbone for the subsequent growth of monolayer graphene. Optical and electrical transport measurements further show that SWNT-graphene hybrids inherit high optical transparency and superior electrical conductivity from monolayer graphene. We also explore the local optoelectronic properties of SWNT-graphene hybrids through spatially resolved photocurrent microscopy and find that the interactions between SWNTs and graphene can induce a strong photocurrent response in the areas where SWNTs link different graphene domains together. These fundamental studies may open a door for engineering optoelectronic properties of SWNT-graphene hybrids by controlling the morphologies of the SWNT frames.
引用
收藏
页码:5233 / 5238
页数:6
相关论文
共 37 条
[31]   Stokes and anti-Stokes Raman spectra of small-diameter isolated carbon nanotubes -: art. no. 115428 [J].
Souza, AG ;
Chou, SG ;
Samsonidze, GG ;
Dresselhaus, G ;
Dresselhaus, MS ;
An, L ;
Liu, J ;
Swan, AK ;
Unlü, MS ;
Goldberg, BB ;
Jorio, A ;
Grüneis, A ;
Saito, R .
PHYSICAL REVIEW B, 2004, 69 (11)
[32]   Graphene nano-ribbon formation through hydrogen-induced unzipping of carbon nanotubes [J].
Tsetseris, L. ;
Pantelides, S. T. .
APPLIED PHYSICS LETTERS, 2011, 99 (14)
[33]   Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors [J].
Tung, Vincent C. ;
Chen, Li-Min ;
Allen, Matthew J. ;
Wassei, Jonathan K. ;
Nelson, Kurt ;
Kaner, Richard B. ;
Yang, Yang .
NANO LETTERS, 2009, 9 (05) :1949-1955
[34]   Photo-Thermoelectric Effect at a Graphene Interface Junction [J].
Xu, Xiaodong ;
Gabor, Nathaniel M. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
McEuen, Paul L. .
NANO LETTERS, 2010, 10 (02) :562-566
[35]   Vertical array growth of small diameter single-walled carbon nanotubes [J].
Xu, Ya-Qiong ;
Flor, Erica ;
Kim, Myung Jong ;
Hamadani, Behrang ;
Schmidt, Howard ;
Smalley, Richard E. ;
Hauge, Robert H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (20) :6560-6561
[36]   Rebar Graphene [J].
Yan, Zheng ;
Peng, Zhiwei ;
Casillas, Gilberto ;
Lin, Jian ;
Xiang, Changsheng ;
Zhou, Haiqing ;
Yang, Yang ;
Ruan, Gedeng ;
Raji, Abdul-Rahman O. ;
Samuel, Errol L. G. ;
Hauge, Robert H. ;
Yacaman, Miguel Jose ;
Tour, James M. .
ACS NANO, 2014, 8 (05) :5061-5068
[37]   Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors [J].
Zhou, XJ ;
Park, JY ;
Huang, SM ;
Liu, J ;
McEuen, PL .
PHYSICAL REVIEW LETTERS, 2005, 95 (14)