Synthesis, structural and dielectric properties of 0.8PMN-0.2PT relaxor ferroelectric ceramic

被引:7
作者
Takarkhede, M. V. [1 ]
Band, S. A. [2 ]
机构
[1] JD Coll Engn & Management JDCOEM, Dept Phys, Nagpur 441501, Maharashtra, India
[2] Yeshwantrao Chavan Coll Engn, Dept Phys, Nagpur 441110, Maharashtra, India
关键词
Relaxor; dielectric properties; perovskite; pyrochlore; sintering temperature; LEAD MAGNESIUM NIOBATE; MORPHOTROPIC PHASE-BOUNDARY; REACTION-SINTERING METHOD; SOL-GEL METHOD; PMN-PT; ELECTRICAL-PROPERTIES; SINGLE-CRYSTALS; ROUTE; TEMPERATURE; TRANSITION;
D O I
10.1007/s12034-017-1444-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A 0.8PMN-0.2PT solid-solution ceramic was synthesized by columbite processing technique. The effects of sintering temperature on the density, structure and microstructure and in turn on the dielectric properties were investigated. The ceramics sintered at and above 1050 degrees C resulted in single-phase perovskite formation. However, high density >90% is achieved only after 1170 degrees C. Microstructural analysis revealed that grain size increases with increase in sintering temperature. Asignificant increase in the peak of dielectric permittivity only after 1150 degrees C owing to increase in density is noted in this study. The quadratic law applied to this ceramic demonstrates that the transition is diffused. The broadness in phase transition and lower dielectric relaxation obtained for the composition demonstrate that the ceramic exhibits characteristics of both relaxor and normal ferroelectrics. The ceramic of composition 0.8PMN-0.2PT exhibits excellent dielectric properties epsilon(r-max) = 20294-27338 at 100 Hz with T-c = 100-96 degrees C at low sintering temperature 1170-1180 degrees C, respectively.
引用
收藏
页码:917 / 923
页数:7
相关论文
共 50 条
[41]   Changes in Ferroelectric Properties of 0.7PMN-0.3PT Ceramic with Compressive Stress [J].
Unruan, M. ;
Wongmaneerung, R. ;
Laosiritaworn, Y. ;
Ananta, S. ;
Yimnirun, R. .
SMART MATERIALS, 2008, 55-57 :277-280
[42]   Dielectric, energy storage, and charge-discharge properties of Yb-modified Sr0.7Bi0.2TiO3 relaxor ferroelectric ceramic [J].
Chen, Jingjing ;
Zhao, Peng ;
Si, Feng ;
Zhang, Shuren ;
Fang, Zixuan ;
Tang, Bin .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024, 107 (04) :2504-2516
[43]   Microindentation response of relaxor ferroelectric PMN-0.32PT single crystal [J].
Dadhich, Ramanand ;
Korimilli, Eswar Prasad ;
Singh, Indrasen .
CERAMICS INTERNATIONAL, 2022, 48 (19) :29093-29101
[44]   Fabrication and characterization of perovskite ferroelectric PMN/PT ceramic nanocomposites [J].
R. Wongmaneerung ;
R. Yimnirun ;
S. Ananta .
Journal of Materials Science, 2009, 44 :5428-5440
[45]   Structural and ferroelectric properties of 0.9PMN-0.1PT thin films [J].
Mietschke, M. ;
Engelhardt, S. ;
Faehler, S. ;
Molin, C. ;
Gebhardt, S. ;
Schultz, L. ;
Huehne, R. .
FERROELECTRICS, 2016, 499 (01) :57-63
[46]   Optical Properties of PT-Based Relaxor Ferroelectric Crystals [J].
He, Chongjun ;
Wen, Ying ;
Wen, Yiyang ;
Zhou, Kai ;
Deng, Chenguang ;
Li, Qian ;
Lu, Yuangang .
CRYSTAL RESEARCH AND TECHNOLOGY, 2023, 58 (06)
[47]   Dielectric, ferroelectric, magnetic and magnetoelectric properties of PMN-PT based ME composites [J].
Sheikh, Arif D. ;
Mathe, V. L. .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2011, 72 (12) :1423-1429
[48]   Structural, dielectric and piezoelectric properties of the ferroelectric PZT-BT ceramic compounds [J].
Miclea, C. ;
Miclea, C. F. ;
Amarande, L. ;
Miclea, C. T. ;
Cioangher, M. .
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2018, 20 (9-10) :558-565
[49]   Anisotropy free energy contribution of the ferroelectric domain dynamics in PMN-PT and PIN-PMN-PT relaxor ferroelectrics [J].
Perez-Moyet, Richard ;
Cardona-Quintero, Yenny ;
Doyle, Ian M. ;
Heitmann, Adam A. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2023, 106 (09) :5522-5540
[50]   Synthesis, structural, magnetic and magnetocaloric properties of La0.8Sr0.2MnO3 nanoparticles [J].
Salaheldin, Taher A. ;
Ghani, A. A. ;
AboZied, Abd El-Rahman T. ;
Ali, Ahmed I. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 136 (02) :621-627