Influence of Size, Shape, and Surface Coating on the Stability of Aqueous Suspensions of CdSe Nanoparticles

被引:76
作者
Mulvihill, Martin J. [1 ]
Habas, Susan E.
Jen-La Plante, Han
Wan, Jiamin [1 ]
Mokari, Taleb
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA
关键词
SEMICONDUCTOR CLUSTERS; GOLD NANOPARTICLES; LIGAND-EXCHANGE; NANOCRYSTALS; AGGREGATION; WATER; TEMPERATURE; CHEMISTRY; TOXICITY; KINETICS;
D O I
10.1021/cm101262s
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In response to the rapid development and emerging commercialization of nanoparticles, fundamental studies concerning the fate of nanoparticles in the environment are needed. Precise control over the nanoparticle size, shape, and surface coating of cadmium selenide particles modified with thiolate ligands has been used to analyze the effects of nanoparticle design on their stability in aqueous environments. Nanoparticle stability was quantified using the concept of critical coagulation concentration (CCC) in solutions of sodium chloride. These investigations characterized the instability of the ligand coatings, which varied directly with chain length of the capping ligands. The stability of the ligand coatings were characterized as a function of time, pH, and ionic strength. Ligand dissociation has been shown to be a primary mechanism for nanoparticle aggregation when short-chain (C-2-C-6) ligands are used in the ligand shell. Stable nanopartiele suspensions prepared with long chain ligands (C-11) were used to characterize nanoparticle stability as a function of size and shape. A linear relationship between particle surface area and the CCC was discovered and was found to be independent of nanoparticle shape. Quantitative analysis of nanoparticle size, shape, and surface coating demonstrated the importance of ligand stability and particle surface area for the prediction of nanoparticle stability.
引用
收藏
页码:5251 / 5257
页数:7
相关论文
共 52 条
[1]   Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions [J].
Adams, Laura K. ;
Lyon, Delina Y. ;
Alvarez, Pedro J. J. .
WATER RESEARCH, 2006, 40 (19) :3527-3532
[2]   Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals [J].
Aldana, J ;
Lavelle, N ;
Wang, YJ ;
Peng, XG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (08) :2496-2504
[3]   Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols [J].
Aldana, J ;
Wang, YA ;
Peng, XG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (36) :8844-8850
[4]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[5]   Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems [J].
Brant, J ;
Lecoanet, H ;
Wiesner, MR .
JOURNAL OF NANOPARTICLE RESEARCH, 2005, 7 (4-5) :545-553
[6]   BULK AND NANOSTRUCTURE GROUP-II-VI COMPOUNDS FROM MOLECULAR ORGANOMETALLIC PRECURSORS [J].
BRENNAN, JG ;
SIEGRIST, T ;
CARROLL, PJ ;
STUCZYNSKI, SM ;
REYNDERS, P ;
BRUS, LE ;
STEIGERWALD, ML .
CHEMISTRY OF MATERIALS, 1990, 2 (04) :403-409
[7]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[9]   Reproducible, High-Throughput Synthesis of Colloidal Nanocrystals for Optimization in Multidimensional Parameter Space [J].
Chan, Emory M. ;
Xu, Chenxu ;
Mao, Alvin W. ;
Han, Gang ;
Owen, Jonathan S. ;
Cohen, Bruce E. ;
Milliron, Delia J. .
NANO LETTERS, 2010, 10 (05) :1874-1885
[10]  
Chen KL, 2006, ENVIRON SCI TECHNOL, V40, P1516, DOI 10.1021/es0518068