A NOTE ON THE NON-COMMUTATIVE LAPLACE-VARADHAN INTEGRAL LEMMA

被引:4
作者
De Roeck, W. [1 ]
Maes, Christian [2 ]
Netocny, Karel [3 ]
Rey-Bellet, Luc [4 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, D-6900 Heidelberg, Germany
[2] Katholieke Univ Leuven, Inst Theoret Fys, Louvain, Belgium
[3] Acad Sci Czech Republ, Inst Phys, Prague, Czech Republic
[4] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
关键词
Quantum large deviations; quantum lattice systems; Laplace-Varadhan lemma; LARGE DEVIATIONS; STATES;
D O I
10.1142/S0129055X10004089
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We continue the study of the free energy of quantum lattice spin systems where to the local Hamiltonian H an arbitrary mean field term is added, a polynomial function of the arithmetic mean of some local observables X and Y that do not necessarily commute. By slightly extending a recent paper by Hiai, Mosonyi, Ohno and Petz [10], we prove in general that the free energy is given by a variational principle over the range of the operators X and Y. As in [10], the result is a non-commutative extension of the Laplace-Varadhan asymptotic formula.
引用
收藏
页码:839 / 858
页数:20
相关论文
共 23 条
[1]  
[Anonymous], 1993, Large deviations techniques and applications
[2]  
[Anonymous], GRUYTER STUDIES MATH
[3]   EQUIVALENCE OF KMS AND GIBBS CONDITIONS FOR STATES OF QUANTUM LATTICE SYSTEMS [J].
ARAKI, H ;
ION, PDF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 35 (01) :1-12
[4]   Thermodynamics of spin systems on small-world hypergraphs [J].
Bolle, D. ;
Heylen, R. ;
Skantzos, N. S. .
PHYSICAL REVIEW E, 2006, 74 (05)
[5]  
BRATTELLI O, 1996, OPERATOR ALGEBRAS QU, V2
[6]  
BRU JB, EQUILIBRIUM ST UNPUB
[7]   Quantum macrostates, equivalence of ensembles, and an H-theorem [J].
De Roeck, Wojciech ;
Maes, Christian ;
Netocny, Karel .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (07)
[8]  
DENHOLLANDER F, 2000, FIELD I MONOGRAPHS, V14
[9]  
Deuschel J.-D., 1989, PURE APPL MATH, V137
[10]  
ELLIS RS, 2005, LARGE DEVIATIONS STA