Remote Generation of Magnon Schrodinger Cat State via Magnon-Photon Entanglement

被引:121
作者
Sun, Feng-Xiao [1 ,2 ,3 ]
Zheng, Sha-Sha [1 ,2 ,3 ]
Xiao, Yang [4 ]
Gong, Qihuang [1 ,2 ,3 ,5 ]
He, Qiongyi [1 ,2 ,3 ,5 ]
Xia, Ke [6 ]
机构
[1] Peking Univ, State Key Lab Mesoscop Phys, Sch Phys, Frontiers Sci Ctr Nanooptoelect, Beijing 100871, Peoples R China
[2] Peking Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[4] Nanjing Univ Aeronaut & Astronaut, Dept Appl Phys, Nanjing 210016, Peoples R China
[5] Peking Univ, Yangtze Delta Inst Optoelect, Nantong 226010, Jiangsu, Peoples R China
[6] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
基金
北京市自然科学基金; 中国博士后科学基金; 中国国家自然科学基金;
关键词
COHERENT STATES; QUANTUM; SUPERPOSITION;
D O I
10.1103/PhysRevLett.127.087203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The magnon cat state represents a macroscopic quantum superposition of collective magnetic excitations of large number spins that not only provides fundamental tests of macroscopic quantum effects but also finds applications in quantum metrology and quantum computation. In particular, remote generation and manipulation of Schrodinger cat states are particularly interesting for the development of long-distance and large-scale quantum information processing. Here, we propose an approach to remotely prepare magnon even or odd cat states by performing local non-Gaussian operations on the optical mode that is entangled with the magnon mode through pulsed optomagnonic interaction. By evaluating key properties of the resulting cat states, we show that for experimentally feasible parameters, they are generated with both high fidelity and nonclassicality, as well as with a size large enough to be useful for quantum technologies. Furthermore, the effects of experimental imperfections such as the error of projective measurements and dark count when performing single-photon operations have been discussed, where the lifetime of the created magnon cat states is expected to be t similar to 1 mu s.
引用
收藏
页数:6
相关论文
共 70 条
  • [1] Extremal entanglement and mixedness in continuous variable systems
    Adesso, G
    Serafini, A
    Illuminati, F
    [J]. PHYSICAL REVIEW A, 2004, 70 (02) : 022318 - 1
  • [2] Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems
    Bai, Lihui
    Harder, M.
    Chen, Y. P.
    Fan, X.
    Xiao, J. Q.
    Hu, C. -M.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (22)
  • [3] Magnon heralding in cavity optomagnonics
    Bittencourt, Victor A. S. V.
    Feulner, Verena
    Kusminskiy, Silvia Viola
    [J]. PHYSICAL REVIEW A, 2019, 100 (01)
  • [4] Magnon-phonon interactions in magnon spintronics (Review article)
    Bozhko, D. A.
    Vasyuchka, V. I.
    Chumak, A. V.
    Serga, A. A.
    [J]. LOW TEMPERATURE PHYSICS, 2020, 46 (04) : 383 - 399
  • [5] Optical Manipulation of a Magnon-Photon Hybrid System
    Braggio, C.
    Carugno, G.
    Guarise, M.
    Ortolan, A.
    Ruoso, G.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 118 (10)
  • [6] Exchange magnon-polaritons in microwave cavities
    Cao, Yunshan
    Yan, Peng
    Huebl, Hans
    Goennenwein, Sebastian T. B.
    Bauer, Gerrit E. W.
    [J]. PHYSICAL REVIEW B, 2015, 91 (09):
  • [7] Chumak AV, 2015, NAT PHYS, V11, P453, DOI [10.1038/nphys3347, 10.1038/NPHYS3347]
  • [8] Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping
    Cochrane, PT
    Milburn, GJ
    Munro, WJ
    [J]. PHYSICAL REVIEW A, 1999, 59 (04): : 2631 - 2634
  • [9] Dakna M, 1997, PHYS REV A, V55, P3184, DOI 10.1103/PhysRevA.55.3184
  • [10] Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping
    Demokritov, S. O.
    Demidov, V. E.
    Dzyapko, O.
    Melkov, G. A.
    Serga, A. A.
    Hillebrands, B.
    Slavin, A. N.
    [J]. NATURE, 2006, 443 (7110) : 430 - 433