Principal Component Analysis in the local differential privacy model

被引:14
|
作者
Wang, Di [1 ]
Xu, Jinhui [1 ]
机构
[1] SUNY Buffalo, Dept Comp Sci & Engn, 338 Davis Hall, Buffalo, NY 14260 USA
关键词
Local differential privacy; Principal Component Analysis; Sparse PCA;
D O I
10.1016/j.tcs.2019.12.019
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study the Principal Component Analysis (PCA) problem under the (distributed) non-interactive local differential privacy model. For the low dimensional case (i.e., p << n), we show the optimal rate of Theta(kp/n epsilon(2)) (omitting the eigenvalue terms) for the private minimax risk of the k-dimensional PCA using the squared subspace distance as the measurement, where n is the sample size and E is the privacy parameter. For the high dimensional (i.e., p >> n) row sparse case, we first give a lower bound of Omega(ks log p/n epsilon(2))) on the private minimax risk, where s is the underlying sparsity parameter. Then we provide an efficient algorithm to achieve the upper bound of O(s(2) log p/n epsilon(2)). Experiments on both synthetic and real world datasets confirm our theoretical guarantees. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:296 / 312
页数:17
相关论文
共 50 条
  • [1] Principal Component Analysis in the Local Differential Privacy Model
    Wang, Di
    Xu, Jinhui
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4795 - 4801
  • [2] Differential Privacy Principal Component Analysis for Support Vector Machines
    Huang, Yuxian
    Yang, Geng
    Xu, Yahong
    Zhou, Hao
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [3] Differential privacy data publishing method based on the probabilistic principal component analysis
    Gu Z.
    Zhang G.
    Ma C.
    Song L.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2021, 42 (08): : 1217 - 1223
  • [4] Local component based principal component analysis model for multimode process monitoring
    Yuan Li
    Dongsheng Yang
    Chinese Journal of Chemical Engineering, 2021, 34 (06) : 116 - 124
  • [5] Local component based principal component analysis model for multimode process monitoring
    Li, Yuan
    Yang, Dongsheng
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2021, 34 : 116 - 124
  • [6] Topological local principal component analysis
    Liu, ZY
    Xu, L
    NEUROCOMPUTING, 2003, 55 (3-4) : 739 - 745
  • [7] Topological local principal component analysis
    Liu, ZG
    Xu, L
    ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 1346 - 1350
  • [8] Local Functional Principal Component Analysis
    Mas, Andre
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2008, 2 (01) : 135 - 167
  • [9] Local Functional Principal Component Analysis
    André Mas
    Complex Analysis and Operator Theory, 2008, 2 : 135 - 167
  • [10] Dimension reduction by local principal component analysis
    Kambhatla, N
    Leen, TK
    NEURAL COMPUTATION, 1997, 9 (07) : 1493 - 1516