Real-Time Driver's Focus of Attention Extraction and Prediction using Deep Learning

被引:0
|
作者
Hong, Pei-heng [1 ]
Wang, Yuehua [1 ]
机构
[1] Texas A&M Univ Commerce, Dept Comp Sci, Commerce, TX 75428 USA
关键词
Driving; attention; interesting zones; deep neural network; deep learning; models;
D O I
10.14569/IJACSA.2021.0120601
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Driving is one of the most common activities in our modern lives. Every day, millions drive to and from their schools or workplaces. Even though this activity seems simple and everyone knows how to drive on roads, it actually requires drivers' complete attention to keep their eyes on the road and surrounding cars for safe driving. However, most of the research focused on either keeping improving the configurations of active safety systems with high-cost components like Lidar, night vision cameras, and radar sensor array, or finding the optimal way of fusing and interpreting sensor information without considering the impact of drivers' continuous attention and focus. We notice that effective safety technologies and systems are greatly affected by drivers' attention and focus. In this paper, we design, implement and evaluate DFaep, a deep learning network for automatically examining, estimating, and predicting driver's focus of attention in a real-time manner with dual low-cost dash cameras for driver-centric and car-centric views. Based on the raw stream data captured by the dash cameras during driving, we first detect the driver's face and eye and generate augmented face images to extract facial features and enable real-time head movement tracking. We then parse the driver's attention behaviors and gaze focus together with the road scene data captured by one front-facing dash camera faced towards the roads. Facial features, augmented face images, and gaze focus data are then inputted to our deep learning network for modeling drivers' driving and attention behaviors. Experiments are then conducted on the large dataset, DR(eye)VE, and our own dataset under realistic driving conditions. The findings of this study indicated that the distribution of driver's attention and focus is highly skewed. Results show that DFaep can quickly detect and predict the driver's attention and focus, and the average accuracy of prediction is 99.38%. This will provide a basis and feasible solution with a computational learnt model for capturing and understanding driver's attention and focus to help avoid fatal collisions and eliminate the probability of potential unsafe driving behavior in the future.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [1] Real-time Driver Drowsiness Detection using Deep Learning
    Dipu M.T.A.
    Hossain S.S.
    Arafat Y.
    Rafiq F.B.
    Dipu, Md. Tanvir Ahammed, 1600, Science and Information Organization (12): : 844 - 850
  • [2] Real-time Driver Drowsiness Detection using Deep Learning
    Dipu, Md Tanvir Ahammed
    Hossain, Syeda Sumbul
    Arafat, Yeasir
    Rafiq, Fatama Binta
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (07) : 844 - 850
  • [3] Real-time categorization of driver's gaze zone using the deep learning techniques
    Choi, In-Ho
    Hong, Sung Kyung
    Kim, Yong-Guk
    2016 INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2016, : 143 - 148
  • [4] Detection of driver's inattention: a real-time deep learning approach
    Tryhub, S.
    Masala, G. L.
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 3993 - 3998
  • [5] Real-time Driver Monitoring using Facial Landmarks and Deep Learning
    Joshi, Soham
    Venugopalan, Shankaran
    Kumar, Animesh
    Kukade, Shweta
    Lodha, Mokshit
    Motade, Sumitra
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [6] Real-time relative permeability prediction using deep learning
    Arigbe, O. D.
    Oyeneyin, M. B.
    Arana, I.
    Ghazi, M. D.
    JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2019, 9 (02) : 1271 - 1284
  • [7] Real-time relative permeability prediction using deep learning
    O. D. Arigbe
    M. B. Oyeneyin
    I. Arana
    M. D. Ghazi
    Journal of Petroleum Exploration and Production Technology, 2019, 9 : 1271 - 1284
  • [8] Sleep Deprivation Detection for Real-Time Driver Monitoring Using Deep Learning
    Garcia-Garcia, Miguel
    Caplier, Alice
    Rombaut, Michele
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 435 - 442
  • [9] Real-time Driver Identification using Vehicular Big Data and Deep Learning
    Jeong, Daun
    Kim, MinSeok
    Kim, KyungTaek
    Kim, TaeWang
    Jin, JiHun
    Lee, ChungSu
    Lim, Sejoon
    2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 123 - 130
  • [10] Real-Time Driver Maneuver Prediction Using LSTM
    Khairdoost, Nima
    Shirpour, Mohsen
    Bauer, Michael A.
    Beauchemin, Steven S.
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2020, 5 (04): : 714 - 724