Chaotic dynamics of a fractional order glucose-insulin regulatory system

被引:21
作者
Rajagopal, Karthikeyan [1 ,2 ]
Bayani, Atiyeh [3 ]
Jafari, Sajad [3 ,4 ]
Karthikeyan, Anitha [1 ]
Hussain, Iqtadar [5 ]
机构
[1] Def Univ, Ctr Nonlinear Dynam, Bishoftu 1041, Ethiopia
[2] Mekelle Univ, Inst Energy, Mekelle 231, Ethiopia
[3] Amirkabir Univ Technol, Dept Biomed Engn, Tehran 1591634311, Iran
[4] Ton Duc Thang Univ, Fac Elect & Elect Engn, Nonlinear Syst & Applicat, Ho Chi Minh City 700010, Vietnam
[5] Qatar Univ, Dept Math Stat & Phys, Doha 2713, Qatar
关键词
Diabetes mellitus; Chaos; Bifurcation; Multistability; Antimonotonicity; O415; 5; MATHEMATICAL-MODEL; FPGA IMPLEMENTATION; HIDDEN ATTRACTOR; BIFURCATION; DESIGN;
D O I
10.1631/FITEE.1900104
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The fractional order model of a glucose-insulin regulatory system is derived and presented. It has been extensively proved in the literature that fractional order analysis of complex systems can reveal interesting and unexplored features of the system. In our investigations we have revealed that the glucose-insulin regulatory system shows multistability and antimonotonicity in its fractional order form. To show the effectiveness of fractional order analysis, all numerical investigations like stability of the equilibrium points, Lyapunov exponents, and bifurcation plots are derived. Various biological disorders caused by an unregulated glucose-insulin system are studied in detail. This may help better understand the regulatory system.
引用
收藏
页码:1108 / 1118
页数:11
相关论文
共 57 条
  • [21] Diethelm K, 1998, Forschung Und Wissenschaftliches Rechnen, V1999, P57
  • [22] Hidden attractors in dynamical systems
    Dudkowski, Dawid
    Jafari, Sajad
    Kapitaniak, Tomasz
    Kuznetsov, Nikolay V.
    Leonov, Gennady A.
    Prasad, Awadhesh
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 637 : 1 - 50
  • [23] Elsadany Abd-Elalim A., 2012, Computational Ecology and Software, V2, P169
  • [24] Chaos in a predator-prey-based mathematical model for illicit drug consumption
    Ginoux, Jean-Marc
    Naeck, Roomila
    Ruhomally, Yusra Bibi
    Dauhoo, Muhammad Zaid
    Perc, Matjaz
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 347 : 502 - 513
  • [25] Is type 1 diabetes a chaotic phenomenon?
    Ginoux, Jean-Marc
    Ruskeepaa, Heikki
    Perc, Matjaz
    Naeck, Roomila
    Di Costanzo, Veronique
    Bouchouicha, Moez
    Fnaiech, Farhat
    Sayadi, Mounir
    Hamdi, Takoua
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 111 : 198 - 205
  • [26] Toward a complex system understanding of bipolar disorder: A chaotic model of abnormal circadian activity rhythms in euthymic bipolar disorder
    Hadaeghi, Fatemeh
    Golpayegani, Mohammad Reza Hashemi
    Jafari, Sajad
    Murray, Greg
    [J]. AUSTRALIAN AND NEW ZEALAND JOURNAL OF PSYCHIATRY, 2016, 50 (08) : 783 - 792
  • [27] Hansen K., 1923, ACTA MED SCAND, V4, P27
  • [28] Nonlinear dynamics and diabetes control
    Holt, T
    [J]. ENDOCRINOLOGIST, 2003, 13 (06) : 452 - 456
  • [29] Is there chaos in the brain? II. Experimental evidence and related models
    Korn, H
    Faure, P
    [J]. COMPTES RENDUS BIOLOGIES, 2003, 326 (09) : 787 - 840
  • [30] Biological variation of glucose and insulin includes a deterministic chaotic component
    Kroll, MH
    [J]. BIOSYSTEMS, 1999, 50 (03) : 189 - 201