Multiple serine transposase dimers assemble the transposon-end synaptic complex during IS607-family transposition

被引:12
作者
Chen, Wenyang [1 ]
Mandali, Sridhar [1 ]
Hancock, Stephen P. [1 ,4 ]
Kumar, Pramod [1 ,5 ]
Collazo, Michael [2 ]
Cascio, Duilio [2 ]
Johnson, Reid C. [1 ,3 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Biol Chem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Inst Genom & Prote, Dept Energy, Los Angeles, CA USA
[3] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90024 USA
[4] Towson Univ, Dept Chem, Towson, MD USA
[5] Natl Ctr Cell Sci, Pune, Maharashtra, India
关键词
DNA TRANSPOSITION; STRUCTURAL BASIS; GENES; ELEMENTS; BACTERIOPHAGE; ARCHITECTURE; DIVERSITY; SEQUENCES; BACTERIAL; SOFTWARE;
D O I
10.7554/eLife.39611
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
IS607-family transposons are unusual because they do not have terminal inverted repeats or generate target site duplications. They encode two protein-coding genes, but only tnpA is required for transposition. Our X-ray structures confirm that TnpA is a member of the serine recombinase (SR) family, but the chemically-inactive quaternary structure of the dimer, along with the N-terminal location of the DNA binding domain, are different from other SRs. TnpA dimers from IS 1535 cooperatively associate with multiple subterminal repeats, which together with additional nonspecific binding, form a nucleoprotein filament on one transposon end that efficiently captures a second unbound end to generate the paired-end complex (PEC). Formation of the PEC does not require a change in the dimeric structure of the catalytic domain, but remodeling of the C-terminal a-helical region is involved. We posit that the PEC recruits a chemically-active conformer of TnpA to the transposon end to initiate DNA chemistry.
引用
收藏
页数:27
相关论文
共 63 条
[1]   PHENIX:: building new software for automated crystallographic structure determination [J].
Adams, PD ;
Grosse-Kunstleve, RW ;
Hung, LW ;
Ioerger, TR ;
McCoy, AJ ;
Moriarty, NW ;
Read, RJ ;
Sacchettini, JC ;
Sauter, NK ;
Terwilliger, TC .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2002, 58 :1948-1954
[2]   hAT Transposable Elements [J].
Atkinson, Peter W. .
MICROBIOLOGY SPECTRUM, 2015, 3 (04)
[3]   Transposases are the most abundant, most ubiquitous genes in nature [J].
Aziz, Ramy K. ;
Breitbart, Mya ;
Edwards, Robert A. .
NUCLEIC ACIDS RESEARCH, 2010, 38 (13) :4207-4217
[4]   MOLECULAR-GENETICS OF THE CHLORAMPHENICOL-RESISTANCE TRANSPOSON TN4451 FROM CLOSTRIDIUM-PERFRINGENS - THE TNPX SITE-SPECIFIC RECOMBINASE EXCISES A CIRCULAR TRANSPOSON MOLECULE [J].
BANNAM, TL ;
CRELLIN, PK ;
ROOD, JI .
MOLECULAR MICROBIOLOGY, 1995, 16 (03) :535-551
[5]   Homologues of bacterial TnpB_IS605 are widespread in diverse eukaryotic transposable elements [J].
Bao, Weidong ;
Jurka, Jerzy .
MOBILE DNA, 2013, 4
[6]   PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia [J].
Baudry, Celine ;
Malinsky, Sophie ;
Restituito, Matthieu ;
Kapusta, Aurelie ;
Rosa, Sarah ;
Meyer, Eric ;
Betermier, Mireille .
GENES & DEVELOPMENT, 2009, 23 (21) :2478-2483
[7]   GENETIC AND BIOCHEMICAL INVESTIGATION OF ESCHERICHIA-COLI MUTANT-HFL-1 WHICH IS LYSOGENIZED AT HIGH-FREQUENCY BY BACTERIOPHAGE-LAMBDA [J].
BELFORT, M ;
WULFF, DL .
JOURNAL OF BACTERIOLOGY, 1973, 115 (01) :299-306
[8]   A Brief History of the Status of Transposable Elements: From Junk DNA to Major Players in Evolution [J].
Biemont, Christian .
GENETICS, 2010, 186 (04) :1085-1093
[9]   New insertion sequences of Sulfolobus:: functional properties and implications for genome evolution in hyperthermophilic archaea [J].
Blount, ZD ;
Grogan, DW .
MOLECULAR MICROBIOLOGY, 2005, 55 (01) :312-325
[10]   A proposed mechanism for IS607-family serine transposases [J].
Boocock, Martin R. ;
Rice, Phoebe A. .
MOBILE DNA, 2013, 4