Adjoint Problems for Stationary Problems with Nonlocal Boundary Conditions

被引:0
作者
Norkunaite, J. [1 ]
Stikonas, A. [2 ]
机构
[1] Vilnius Univ, Fac Math & Informat, Naugarduko 24, LT-03225 Vilnius, Lithuania
[2] Vilnius Univ, Inst Math & Informat, LT-08663 Vilnius, Lithuania
来源
DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS (DETA 2009) | 2009年
关键词
stationary problem; nonlocal boundary conditions; adjoint problem; FINITE-DIFFERENCE SCHEME; STURM-LIOUVILLE PROBLEM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate adjoint problems in differential and discrete cases for stationary problems with nonlocal boundary conditions. We determine a class of problems with nonlocal conditions and construct the adjoint problem for them. The adjoint problem is in the same class as the original problem. We define classical fundamental solutions for such problems and we find solutions of the nonlocal problem as a linear combination of these solutions.
引用
收藏
页码:131 / 138
页数:8
相关论文
共 23 条
[1]  
[Anonymous], MATH MODEL ANAL
[2]  
BITSADZE AV, 1969, DOKL AKAD NAUK SSSR+, V185, P739
[3]  
Cannon J.R., 1963, Quarterly of Applied Mathematics, V21, P155, DOI DOI 10.1090/QAM/160437
[4]   A monotonic finite-difference scheme for a parabolic problem with nonlocal conditions [J].
Ciegis, R ;
Stikonas, A ;
Stikoniene, O ;
Suboc, O .
DIFFERENTIAL EQUATIONS, 2002, 38 (07) :1027-1037
[5]  
Il'in V.A., 1988, DIFF URAVN, V24, P795
[6]  
Il'in V.A., 1987, Differ. Uravn, V23, P1422
[7]  
Ilin V.A., 2003, J.Math. Sci, V116, P3489
[8]  
Ilyin V. A., 1987, Differ. Uravn, V23, P1198
[9]  
Ionkin N.I., 1977, Diff. Uravneniya, V13, P294
[10]  
Kamynin L.I, 1964, UZhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, V4, P1006