Totally permutable products of finite groups satisfying SC or PST

被引:15
作者
Ballester-Bolinches, A
Cossey, J
机构
[1] Univ Valencia, Dept Algebra, E-46100 Burjassot, Valencia, Spain
[2] Australian Natl Univ, Dept Math, Inst Math Sci, Canberra, ACT 0200, Australia
来源
MONATSHEFTE FUR MATHEMATIK | 2005年 / 145卷 / 02期
关键词
finite groups; products; permutability; subnormality;
D O I
10.1007/s00605-004-0263-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Finite groups G = AB factorized by two subgroups A and B such that every subgroup of A permutes with every subgroup of B are studied in this paper. The behaviour of such products with respect to the class of finite groups in which Sylow-permutability is transitive is analyzed.
引用
收藏
页码:89 / 94
页数:6
相关论文
共 19 条
[1]   FINITE-GROUPS WHOSE SUBNORMAL SUBGROUPS PERMUTE WITH ALL SYLOW SUBGROUPS [J].
AGRAWAL, RK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 47 (01) :77-83
[2]   Finite soluble groups with permutable subnormal subgroups [J].
Alejandre, MJ ;
Ballester-Bolinches, A ;
Pedraza-Aguilera, MC .
JOURNAL OF ALGEBRA, 2001, 240 (02) :705-722
[3]  
Amberg B., 1992, Products of Groups
[4]   ON THE SUPERSOLVABILITY OF FINITE-GROUPS [J].
ASAAD, M ;
SHAALAN, A .
ARCHIV DER MATHEMATIK, 1989, 53 (04) :318-326
[5]   Groups in which Sylow subgroups and subnormal subgroups permute [J].
Ballester-Bolinches, A ;
Beidleman, JC ;
Heineken, H .
ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (1-2) :63-69
[6]   On finite soluble groups in which Sylow permutability is a transitive relation [J].
Ballester-Bolinches, A ;
Esteban-Romero, R .
ACTA MATHEMATICA HUNGARICA, 2003, 101 (03) :193-202
[7]   Sylow permutable subnormal subgroups of finite groups [J].
Ballester-Bolinches, A ;
Esteban-Romero, R .
JOURNAL OF ALGEBRA, 2002, 251 (02) :727-738
[8]   Sylow permutable subnormal subgroups of finite groups II [J].
Ballester-Bolinches, A ;
Esteban-Romero, R .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2001, 64 (03) :479-486
[9]   A question of R. Maier concerning formations [J].
BallesterBolinches, A ;
PerezRamos, MD .
JOURNAL OF ALGEBRA, 1996, 182 (03) :738-747
[10]   Totally permutable torsion subgroups [J].
Beidleman, J ;
Heineken, H .
JOURNAL OF GROUP THEORY, 1999, 2 (04) :377-392