Optical Dispersion Models for Time-Domain Modeling of Metal-Dielectric Nanostructures

被引:59
作者
Prokopeva, Ludmila J. [2 ]
Borneman, Joshua D. [1 ]
Kildishev, Alexander V. [1 ]
机构
[1] Purdue Univ, Birck Nanotechnol Ctr, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Russian Acad Sci, Inst Computat Technol, Novosibirsk, Russia
关键词
Critical points; dispersive media; drude; FDTD methods; FETD; FVTD; Lorentz; Pade approximant; Sellmeier; RECURSIVE CONVOLUTION; FDTD; MEDIA;
D O I
10.1109/TMAG.2010.2091676
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We discuss second-order complex Pade approximants which give a systematic approach to time-domain modeling of dispersive dielectric functions. These approximants, which also reduce to the classical Drude, Lorentz, Sellmeier, critical points and other models upon appropriate truncation, are used to compare frequency domain (FD) versus time-domain (TD) simulations of local optical responses and the transmission-reflection spectra for a plasmonic nanostructure. A comparison is also made using auxiliary differential equations (ADE), and second order recursive convolution (RC) formulations embedded in finite-difference, finite-volume, and finite-element time-domain solvers.
引用
收藏
页码:1150 / 1153
页数:4
相关论文
共 14 条
[1]  
Arima T, 1998, IEICE T ELECTRON, VE81C, P1898
[2]   An analytic model for the optical properties of gold [J].
Etchegoin, P. G. ;
Le Ru, E. C. ;
Meyer, M. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (16)
[3]   LINEAR ELECTRONIC DISPERSION AND FINITE-DIFFERENCE TIME-DOMAIN CALCULATIONS - A SIMPLE APPROACH [J].
HAWKINS, RJ ;
KALLMAN, JS .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1993, 11 (11) :1872-1874
[4]   DISPERSIVE MODELS FOR THE FINITE-DIFFERENCE TIME-DOMAIN METHOD - DESIGN, ANALYSIS, AND IMPLEMENTATION [J].
HULSE, C ;
KNOESEN, A .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (06) :1802-1811
[5]  
Kelley DF, 1996, IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM - 1996 DIGEST, VOLS 1-3, P1652, DOI 10.1109/APS.1996.549918
[6]   Piecewise linear recursive convolution for dispersive media using FDTD [J].
Kelley, DF ;
Luebbers, RJ .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1996, 44 (06) :792-797
[7]   On the Accuracy and Stability of Several Widely Used FDTD Approaches for Modeling Lorentz Dielectrics [J].
Lin, Zhili ;
Thylen, Lars .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2009, 57 (10) :3378-3381
[8]   Implementation of an efficient dielectric function into the finite difference time domain method for simulating the coupling between localized surface plasmons of nanostructures [J].
Lu, J. Y. ;
Chang, Y. H. .
SUPERLATTICES AND MICROSTRUCTURES, 2010, 47 (01) :60-65
[9]   FDTD FOR NTH-ORDER DISPERSIVE MEDIA [J].
LUEBBERS, RJ ;
HUNSBERGER, F .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1992, 40 (11) :1297-1301
[10]  
NI X, 2009, PHOTONICS SHA 2D MOD