ON THE UNIT SPHERE OF POSITIVE OPERATORS

被引:11
|
作者
Peralta, Antonio M. [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Anal Matemt, E-18071 Granada, Spain
来源
BANACH JOURNAL OF MATHEMATICAL ANALYSIS | 2019年 / 13卷 / 01期
关键词
Tingley's problem; extension of isometrics; isometrics; positive operators; operator norm; TINGLEYS PROBLEM; FACIAL STRUCTURE; ISOMETRIES; EXTENSION; SPACES;
D O I
10.1215/17358787-2018-0017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a C*-algebra A, let S (A(+)) denote the set of positive elements in the unit sphere of A. Let H-1, H-2,H- H-3, and H-4 be complex Hilbert spaces, where H-3 and H-4 are infinite-dimensional and separable. In this article, we prove a variant of Tingley's problem by showing that every surjective isometry Delta : S(B(H-1)(+)) -> S(B(H-2)(+)) (resp., Delta : S (K(H-3)(+)) -> S(K(H-4)(+)))admits a unique extension to a surjective complex linear isometry from B(H-1 onto B(H-2) (resp., from K (H-3) onto K (H-4)). This provides a positive answer to a conjecture recently posed by Nagy.
引用
收藏
页码:91 / 112
页数:22
相关论文
共 50 条
  • [41] Invariant sublattices for positive operators
    Kitover, A. K.
    Wickstead, A. W.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2007, 18 (01): : 39 - 60
  • [42] Extensions of positive operators and functionals
    Sebestyen, Zoltan
    Szucs, Zsolt
    Tarcsay, Zsigmond
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 472 : 54 - 80
  • [43] Positive Decompositions of Selfadjoint Operators
    Fongi, Guillermina
    Maestripieri, Alejandra
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 67 (01) : 109 - 121
  • [44] Extension of isometries from the unit sphere of a rank-2 Cartan factor
    Ondřej F. K. Kalenda
    Antonio M. Peralta
    Analysis and Mathematical Physics, 2021, 11
  • [45] Needlet-Whittle estimates on the unit sphere
    Durastanti, Claudio
    Lan, Xiaohong
    Marinucci, Domenico
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 597 - 646
  • [46] ISOMETRIES ON THE UNIT SPHERE OF THE l1-SUM OF STRICTLY CONVEX NORMED SPACES
    Li, Lei
    ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (01): : 33 - 41
  • [47] Steklov Averages as Positive Linear Operators
    Popa, Dorian
    Rasa, Ioan
    FILOMAT, 2016, 30 (05) : 1195 - 1201
  • [48] Differential and Metrical Structure of Positive Operators
    G. Corach
    A.L. Maestripieri
    Positivity, 1999, 3 : 297 - 315
  • [49] POSITIVE TOEPLITZ OPERATORS ON THE BERGMAN SPACE
    Das, Namita
    Sahoo, Madhusmita
    ANNALS OF FUNCTIONAL ANALYSIS, 2013, 4 (02): : 171 - 182
  • [50] Lyapunov rank of polyhedral positive operators
    Orlitzky, Michael
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (05) : 992 - 1000