ON THE UNIT SPHERE OF POSITIVE OPERATORS

被引:11
|
作者
Peralta, Antonio M. [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Anal Matemt, E-18071 Granada, Spain
来源
BANACH JOURNAL OF MATHEMATICAL ANALYSIS | 2019年 / 13卷 / 01期
关键词
Tingley's problem; extension of isometrics; isometrics; positive operators; operator norm; TINGLEYS PROBLEM; FACIAL STRUCTURE; ISOMETRIES; EXTENSION; SPACES;
D O I
10.1215/17358787-2018-0017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a C*-algebra A, let S (A(+)) denote the set of positive elements in the unit sphere of A. Let H-1, H-2,H- H-3, and H-4 be complex Hilbert spaces, where H-3 and H-4 are infinite-dimensional and separable. In this article, we prove a variant of Tingley's problem by showing that every surjective isometry Delta : S(B(H-1)(+)) -> S(B(H-2)(+)) (resp., Delta : S (K(H-3)(+)) -> S(K(H-4)(+)))admits a unique extension to a surjective complex linear isometry from B(H-1 onto B(H-2) (resp., from K (H-3) onto K (H-4)). This provides a positive answer to a conjecture recently posed by Nagy.
引用
收藏
页码:91 / 112
页数:22
相关论文
共 50 条