共 50 条
ON THE UNIT SPHERE OF POSITIVE OPERATORS
被引:11
|作者:
Peralta, Antonio M.
[1
]
机构:
[1] Univ Granada, Fac Ciencias, Dept Anal Matemt, E-18071 Granada, Spain
来源:
BANACH JOURNAL OF MATHEMATICAL ANALYSIS
|
2019年
/
13卷
/
01期
关键词:
Tingley's problem;
extension of isometrics;
isometrics;
positive operators;
operator norm;
TINGLEYS PROBLEM;
FACIAL STRUCTURE;
ISOMETRIES;
EXTENSION;
SPACES;
D O I:
10.1215/17358787-2018-0017
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Given a C*-algebra A, let S (A(+)) denote the set of positive elements in the unit sphere of A. Let H-1, H-2,H- H-3, and H-4 be complex Hilbert spaces, where H-3 and H-4 are infinite-dimensional and separable. In this article, we prove a variant of Tingley's problem by showing that every surjective isometry Delta : S(B(H-1)(+)) -> S(B(H-2)(+)) (resp., Delta : S (K(H-3)(+)) -> S(K(H-4)(+)))admits a unique extension to a surjective complex linear isometry from B(H-1 onto B(H-2) (resp., from K (H-3) onto K (H-4)). This provides a positive answer to a conjecture recently posed by Nagy.
引用
收藏
页码:91 / 112
页数:22
相关论文