Euclidean Jordan algebra;
Symmetric cone;
Complementarity problem;
Lipschitzian property;
Relaxation transformation;
EUCLIDEAN-JORDAN ALGEBRAS;
PRINCIPAL MINOR PROPERTY;
P-PROPERTIES;
SOLUTION MAP;
TRANSFORMATIONS;
CONTINUITY;
D O I:
10.1016/j.laa.2011.02.009
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let V be a Euclidean Jordan algebra with symmetric cone K. We show that if a linear transformation L on V has the Lipschitzian property and the linear complementarity problem LCP(L, q) over K has a solution for every invertible q is an element of V. then < L(c), c > > 0 for all primitive idempotents c in V. We show that the converse holds for Lyapunov-like transformations, Stein transformations and quadratic representations. We also show that the Lipschitzian Q-property of the relaxation transformation R(A) on V implies that A is a P-matrix. (C) 2011 Elsevier Inc. All rights reserved.
机构:
Xidian Univ, Sch Math & Stat, Xian 710126, Shaanxi, Peoples R China
Xianyang Normal Univ, Sch Math & Informat Sci, Xianyang 712000, Peoples R ChinaXidian Univ, Sch Math & Stat, Xian 710126, Shaanxi, Peoples R China
Zhao, Huali
Liu, Hongwei
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Sch Math & Stat, Xian 710126, Shaanxi, Peoples R ChinaXidian Univ, Sch Math & Stat, Xian 710126, Shaanxi, Peoples R China
机构:
Xidian Univ, Sch Math & Stat, Xian 710126, Shaanxi, Peoples R China
Xianyang Normal Univ, Sch Math & Informat Sci, Xianyang 712000, Peoples R ChinaXidian Univ, Sch Math & Stat, Xian 710126, Shaanxi, Peoples R China
Zhao, Huali
Liu, Hongwei
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Sch Math & Stat, Xian 710126, Shaanxi, Peoples R ChinaXidian Univ, Sch Math & Stat, Xian 710126, Shaanxi, Peoples R China