Segmentation of Myelinated White Matter in Pediatric Brain Magnetic Resonance Images

被引:0
|
作者
Devi, Chelli N. [1 ]
Sundararaman, V. K. [2 ]
Chandrasekharan, Anupama [3 ]
Alex, Zachariah C. [4 ]
机构
[1] VIT Univ, Sch Elect Engn, Vellore, Tamil Nadu, India
[2] Philips Innovat Ctr, Bangalore, Karnataka, India
[3] Sri Ramachandra Univ, Dept Radiol, Madras, Tamil Nadu, India
[4] VIT Univ, Ctr Sponsored Res, Vellore, Tamil Nadu, India
来源
2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC) | 2014年
关键词
Atlas-free segmentation; Myelinated white matter; Pediatric brain MRI; Tsallis entropy segmentation; NEONATAL BRAIN; AUTOMATIC SEGMENTATION; MR-IMAGES;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The automated tissue classification of pediatric brain magnetic resonance images, specially proper segmentation of myelinated white matter, is a highly challenging task. The proposed approach first extracts the brain tissue, followed by a precise delineation of the myelinated component based on Tsallis entropy segmentation. Unlike most of the currently available algorithms, the proposed technique is totally atlas-free. Qualitative validation shows that the obtained segmentation results correspond well to those of manual segmentation.
引用
收藏
页码:726 / 729
页数:4
相关论文
共 50 条
  • [1] Automatic segmentation of infant brain MR images: With special reference to myelinated white matter
    Devi, Chelli N.
    Chandrasekharan, Anupama
    Sundararaman, V. K.
    Alex, Zachariah C.
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2017, 37 (01) : 143 - 158
  • [2] Evaluation of Local Thresholding Algorithms for Segmentation of White Matter Hyperintensities in Magnetic Resonance Images of the Brain
    Piorkowski, Adam
    Lasek, Julia
    APPLIED INFORMATICS (ICAI 2021), 2021, 1455 : 331 - 345
  • [3] Automatic White Matter Hyperintensities Segmentation from Brain Magnetic Resonance Images using Polar Transform
    Chucherd, Sirikan
    Moodleah, Samart
    Rodtook, Annupan
    2020 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE), 2020, : 12 - 17
  • [4] Automatic segmentation of white matter lesions on magnetic resonance images of the brain by using an outlier detection strategy
    Wang, Rui
    Li, Chao
    Wang, Jie
    Wei, Xiaoer
    Li, Yuehua
    Hui, Chun
    Zhu, Yuemin
    Zhang, Su
    MAGNETIC RESONANCE IMAGING, 2014, 32 (10) : 1321 - 1329
  • [5] Artificial Intelligence-based Myelinated White Matter Segmentation for a Pediatric Brain-A Challenging Task
    Jacily Jemila S.
    Brintha Therese A.
    Recent Advances in Computer Science and Communications, 2022, 15 (01) : 40 - 45
  • [6] Metric to quantify white matter damage on brain magnetic resonance images
    Hernandez, Maria Del C. Valdes
    Chappell, Francesca M.
    Maniega, Susana Munoz
    Dickie, David Alexander
    Royle, Natalie A.
    Morris, Zoe
    Anblagan, Devasuda
    Sakka, Eleni
    Armitage, Paul A.
    Bastin, Mark E.
    Deary, Ian J.
    Wardlaw, Joanna M.
    NEURORADIOLOGY, 2017, 59 (10) : 951 - 962
  • [7] Metric to quantify white matter damage on brain magnetic resonance images
    Maria Del C. Valdés Hernández
    Francesca M. Chappell
    Susana Muñoz Maniega
    David Alexander Dickie
    Natalie A. Royle
    Zoe Morris
    Devasuda Anblagan
    Eleni Sakka
    Paul A. Armitage
    Mark E. Bastin
    Ian J. Deary
    Joanna M. Wardlaw
    Neuroradiology, 2017, 59 : 951 - 962
  • [8] Brain magnetic resonance images segmentation
    Zhou Zhenyu
    Ruan Zongcai
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 3078 - 3081
  • [9] White matter hyper-intensities automatic identification and segmentation in magnetic resonance images
    Johanna Patino-Correa, Lizette
    Pogrebnyak, Oleksiy
    Alberto Martinez-Castro, Jesus
    Manuel Felipe-Riveron, Edgard
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (16) : 7114 - 7123
  • [10] AUTOMATIC DETECTION OF WHITE MATTER LESIONS IN MAGNETIC-RESONANCE BRAIN IMAGES
    KAPOULEAS, I
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 1990, 32 (01) : 17 - 35