Two Derivative Runge-Kutta Methods of Order Six

被引:0
|
作者
Kalogiratou, Z. [1 ]
Monovasilis, Th [2 ]
Simos, T. E. [3 ,4 ]
机构
[1] Western Macedonia Univ Appl Sci, Dept Informat Engn, POB 30, Kastoria, Greece
[2] Western Macedonia Univ Appl Sci, Dept Int Trade, POB 30, Kastoria 52100, Greece
[3] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[4] European Acad Sci & Arts, Salzburg, Austria
来源
INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018) | 2019年 / 2116卷
关键词
Two Derivative Runge Kutta methods; sixth order;
D O I
10.1063/1.5114573
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider Two Derivative Runge-Kutta methods. We construct a sixth order methods with five stages.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Construction of Two-Derivative Runge-Kutta Methods of Order Six
    Kalogiratou, Zacharoula
    Monovasilis, Theodoros
    ALGORITHMS, 2023, 16 (12)
  • [2] Order Conditions for Two Derivative Runge Kutta Methods up to Order Six
    Kalogiratou, Z.
    Monovasilis, Th.
    Simos, T. E.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2017 (ICCMSE-2017), 2017, 1906
  • [3] On explicit two-derivative Runge-Kutta methods
    Robert P. K. Chan
    Angela Y. J. Tsai
    Numerical Algorithms, 2010, 53 : 171 - 194
  • [4] On explicit two-derivative Runge-Kutta methods
    Chan, Robert P. K.
    Tsai, Angela Y. J.
    NUMERICAL ALGORITHMS, 2010, 53 (2-3) : 171 - 194
  • [5] Strong Stability Preserving Sixth Order Two-Derivative Runge-Kutta Methods
    Reynoso, Gustavo Franco
    Gottlieb, Sigal
    Grant, Zachary J.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [6] Two-Derivative Runge-Kutta Methods for Differential Equations
    Chan, Robert P. K.
    Wang, Shixiao
    Tsai, Angela Y. J.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 262 - 266
  • [7] Trigonometrical fitting conditions for two derivative Runge-Kutta methods
    Th. Monovasilis
    Z. Kalogiratou
    T. E. Simos
    Numerical Algorithms, 2018, 79 : 787 - 800
  • [8] Trigonometrical fitting conditions for two derivative Runge-Kutta methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    NUMERICAL ALGORITHMS, 2018, 79 (03) : 787 - 800
  • [9] Runge-Kutta with higher order derivative approximations
    Goeken, D
    Johnson, O
    APPLIED NUMERICAL MATHEMATICS, 2000, 34 (2-3) : 207 - 218
  • [10] ORDER BOUND FOR RUNGE-KUTTA METHODS
    BUTCHER, JC
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (03) : 304 - 315