Nanocrystalline Co0.85Se Anchored on Graphene Nanosheets as a Highly Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction

被引:119
作者
Yu, Bo [1 ]
Qi, Fei [1 ]
Chen, Yuanfu [1 ]
Wang, Xinqiang [1 ]
Zheng, Binjie [1 ]
Zhang, Wanli [1 ]
Li, Yanrong [1 ]
Zhang, Lai-Chang [2 ]
机构
[1] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Sichuan, Peoples R China
[2] Edith Cowan Univ, Sch Engn, 270 Joondalup Dr, Perth, WA 6027, Australia
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Co0.85Se nanocrystals; graphene; solvothermal reaction; transition-metal chalcogenide; hydrogen evolution reaction; electrocatalytic activity; NOBLE-METAL ELECTROCATALYST; HIERARCHICAL ARCHITECTURE; FREESTANDING CATHODE; ULTRATHIN NANOSHEETS; NISE2; NANOCRYSTALS; ORGANIC FRAMEWORK; 3D ELECTRODE; COSE2; MOS2; PERFORMANCE;
D O I
10.1021/acsami.7b09108
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
For the first time, a porous and conductive Co0.85Se/graphene network (CSGN), constructed by Co0.85Se nanocrystals being tightly connected with each other and homogeneously anchored on few-layered graphene nanosheets, has been synthesized by a facile one-pot solvothermal method. Compared to unhybridized Co0.85Se, CSGN exhibits much faster kinetics and better electrocatalytic behavior for hydrogen evolution reaction (HER). The HER mechanism of CSGN is improved to Volmer-Tafel combination, instead of Volmer-Heyrovsky combination, for Co0.85Se. CSGN has a very low Tafel slope of 34.4 mV/dec, which is much lower than that of unhybridized Co0.85Se (41.8 mV/dec) and is the lowest ever reported for Co0.85Se-based electrocatalysts. CSGN delivers a current density of 55 mA/cm(2) at 250 mV overpotential, much larger than that of Co0.85Se (33 mA/cm(2)). Furthermore, CSGN shows superior electrocatalytic stability even after 1500 cycles. The excellent HER performance of CSGN is attributed to the unique porous and conductive network, which can not only guarantee interconnected conductive paths in the whole electrode but also provide abundant catalytic active sites, thereby facilitating charge transportation between the electrocatalyst and electrolyte. This work provides insight into rational design and low-cost synthesis of nonprecious transition-metal chalcogenide-based electrocatalysts with high efficiency and excellent stability for HER.
引用
收藏
页码:30703 / 30710
页数:8
相关论文
共 52 条
[1]   Enhancement of electrochemical and catalytic properties of MoS2 through ball-milling [J].
Ambrosi, Adriano ;
Chia, Xinyi ;
Sofer, Zdenek ;
Pumera, Martin .
ELECTROCHEMISTRY COMMUNICATIONS, 2015, 54 :36-40
[2]   Interlaced NiS2-MoS2 nanoflake-nanowires as efficient hydrogen evolution electrocatalysts in basic solutions [J].
An, Tiance ;
Wang, Yang ;
Tang, Jing ;
Wei, Wei ;
Cui, Xiaoqi ;
Alenizi, Abdullah M. ;
Zhang, Lijuan ;
Zheng, Gengfeng .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (35) :13439-13443
[3]   Enhanced photocatalytic H2-evolution by immobilizing CdS nanocrystals on ultrathin Co0.85Se/RGO-PEI nanosheets [J].
Cao, Shuang ;
Chen, Yong ;
Kang, Lei ;
Lin, Zheshuai ;
Fu, Wen-Fu .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (36) :18711-18717
[4]   Solution-Processed Two-Dimensional Metal Dichalcogenide-Based Nanomaterials for Energy Storage and Conversion [J].
Cao, Xiehong ;
Tan, Chaoliang ;
Zhang, Xiao ;
Zhao, Wei ;
Zhang, Hua .
ADVANCED MATERIALS, 2016, 28 (29) :6167-6196
[5]   Electrocatalysis of the hydrogen-evolution reaction by electrodeposited amorphous cobalt selenide films [J].
Carim, Azhar I. ;
Saadi, Fadl H. ;
Soriaga, Manuel P. ;
Lewis, Nathan S. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (34) :13835-13839
[6]   Targeted Synthesis of 2H-and 1T-Phase MoS2 Monolayers for Catalytic Hydrogen Evolution [J].
Chang, Kun ;
Hai, Xiao ;
Pang, Hong ;
Zhang, Huabin ;
Shi, Li ;
Liu, Guigao ;
Liu, Huimin ;
Zhao, Guixia ;
Li, Mu ;
Ye, Jinhua .
ADVANCED MATERIALS, 2016, 28 (45) :10033-10041
[7]   Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides [J].
Chia, Xinyi ;
Eng, Alex Yong Sheng ;
Ambrosi, Adriano ;
Tan, Shu Min ;
Pumera, Martin .
CHEMICAL REVIEWS, 2015, 115 (21) :11941-11966
[8]   Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges [J].
Duan, Xidong ;
Wang, Chen ;
Pan, Anlian ;
Yu, Ruqin ;
Duan, Xiangfeng .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (24) :8859-8876
[9]   High-Performance Electrocatalysis Using Metallic Cobalt Pyrite (CoS2) Micro- and Nanostructures [J].
Faber, Matthew S. ;
Dziedzic, Rafal ;
Lukowski, Mark A. ;
Kaiser, Nicholas S. ;
Ding, Qi ;
Jin, Song .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (28) :10053-10061
[10]   Silicon/Organic Hybrid Solar Cells with 16.2% Efficiency and Improved Stability by Formation of Conformal Heterojunction Coating and Moisture-Resistant Capping Layer [J].
He, Jian ;
Gao, Pingqi ;
Yang, Zhenhai ;
Yu, Jing ;
Yu, Wei ;
Zhang, Yu ;
Sheng, Jiang ;
Ye, Jichun ;
Amine, Joseph Chen ;
Cui, Yi .
ADVANCED MATERIALS, 2017, 29 (15)