Cloning and characterization of CER2, an Arabidopsis gene that affects cuticular wax accumulation

被引:102
作者
Xia, YJ
Nicolau, BJ
Schnable, PS
机构
[1] IOWA STATE UNIV, DEPT ZOOL & GENET, AMES, IA 50011 USA
[2] IOWA STATE UNIV, DEPT BIOCHEM & BIOPHYS, AMES, IA 50011 USA
[3] IOWA STATE UNIV, DEPT AGRON, AMES, IA 50011 USA
关键词
D O I
10.1105/tpc.8.8.1291
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cuticular waxes are complex mixtures of very long chain fatty acids and their derivatives that cover plant surfaces. Mutants of the ECERIFERUM2 (cer2) gene of Arabidopsis condition bright green stems and siliques, indicative of the relatively low abundance of the cuticular wax crystals that comprise the wax bloom on wild-type plants. We cloned the CER2 gene via chromosome walking. Three lines of evidence establish that the cloned sequence represents the CER2 gene: (1) this sequence is capable of complementing the cod mutant phenotype in transgenic plants; (2) the corresponding DNA sequence isolated from plants homozygous for the cer2-2 mutant allele contains a sequence polymorphism that generates a premature stop codon; and (3) the deduced CER2 protein sequence exhibits sequence similarity to that of a maize gene (glossy2) that also is involved in cuticular wax accumulation. The CER2 gene encodes a novel protein with a predicted mass of 47 kD. We studied the expression pattern of the CER2 gene by in situ hybridization and analysis of transgenic Arabidopsis plants carrying a CER2-beta-glucuronidase gene fusion that includes 1.0 kb immediately upstream of CER2 and 0.2 kb of CER2 coding sequences. These studies demonstrate that the CER2 gene is expressed in an organ- and tissue-specific manner; CER2 is expressed at high levels only in the epidermis of young siliques and stems. This finding is consistent with the visible phenotype associated with mutants of the CER2 gene. Hence, the 1.2-kb fragment of the CER2 gene used to construct the CER2-beta-glucuronidase gene fusion includes all of the genetic information required for the epidermis-specific accumulation of CER2 mRNA.
引用
收藏
页码:1291 / 1304
页数:14
相关论文
共 57 条
[1]   BIOSYNTHESIS OF VERY LONG-CHAIN FATTY-ACIDS IN MICROSOMES FROM EPIDERMAL-CELLS OF ALLIUM-PORRUM L [J].
AGRAWAL, VP ;
LESSIRE, R ;
STUMPF, PK .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1984, 230 (02) :580-589
[2]   CHARACTERIZATION AND SOLUBILIZATION OF AN ACYL CHAIN ELONGATION SYSTEM IN MICROSOMES OF LEEK EPIDERMAL-CELLS [J].
AGRAWAL, VP ;
STUMPF, PK .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1985, 240 (01) :154-165
[3]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[4]  
An G., 1988, Plant Molecular Biology Manual, P1, DOI DOI 10.1007/978-94-009-0951-9
[5]  
[Anonymous], 1970, The Cuticles of Plants
[6]  
Ausubel FM., 1994, Curr. Protoc. Mol. Biol
[7]  
BECHTOLD N, 1993, CR ACAD SCI III-VIE, V316, P1194
[8]   CHROMOSOMAL WALKING AND JUMPING TO ISOLATE DNA FROM THE ACE AND ROSY LOCI AND THE BITHORAX COMPLEX IN DROSOPHILA-MELANOGASTER [J].
BENDER, W ;
SPIERER, P ;
HOGNESS, DS .
JOURNAL OF MOLECULAR BIOLOGY, 1983, 168 (01) :17-33
[9]  
BIANCHI A, 1985, MAYDICA, V30, P179
[10]  
BLANCHI G, 1978, MAIZE BREEDING GENET, P533