ON STABILITY AND HYPERSTABILITY OF AN EQUATION CHARACTERIZING MULTI-ADDITIVE MAPPINGS

被引:11
作者
Bahyrycz, Anna [1 ]
机构
[1] AGH Univ Sci & Technol, Fac Appl Math, Mickiewicza 30, PL-30059 Krakow, Poland
来源
FIXED POINT THEORY | 2017年 / 18卷 / 02期
关键词
Multi-additive mapping; Hyers-Ulam stability; hyperstability; fixed point theorem;
D O I
10.24193/fpt-ro.2017.2.35
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using the fixed point approach, we prove some stability and hyperstability results for an equation characterizing multi-additive mappings. Our results generalize some known outcomes. In particular, we give a solution of a problem concerning optimality of some estimations.
引用
收藏
页码:445 / 456
页数:12
相关论文
共 15 条
[1]  
[Anonymous], 2009, CAUCHYS EQUATION JEN
[2]  
Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]
[3]   CLASSES OF TRANSFORMATIONS AND BORDERING TRANSFORMATIONS [J].
BOURGIN, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (04) :223-237
[5]   Hyperstability of the Cauchy equation on restricted domains [J].
Brzdek, J. .
ACTA MATHEMATICA HUNGARICA, 2013, 141 (1-2) :58-67
[6]   Hyperstability and Superstability [J].
Brzdek, Janusz ;
Cieplinski, Krzysztof .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[7]  
Brzkk J., 2011, NONLINEAR ANAL, V74, P6728
[8]   Stability of multi-additive mappings in β-Banach spaces [J].
Cieplinski, Krzysztof .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (11) :4205-4212
[9]   Generalized stability of multi-additive mappings [J].
Cieplinski, Krzysztof .
APPLIED MATHEMATICS LETTERS, 2010, 23 (10) :1291-1294
[10]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436