Synthesis and redox behavior of nanocrystalline Hausmannite (Mn3O4)

被引:58
作者
Pike, Jenna
Hanson, Jonathan
Zhang, Lihua
Chan, Siu-Wai
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[2] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA
[3] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
关键词
D O I
10.1021/cm071704b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hausmannite (Mn3O4) nanoparticles have been prepared by mixing aqueous solutions of manganese nitrate and hexamethylenetetramine from 20 to 80 degrees C. Activation energy for the particle formation increases from 0.5 to 0.8 kJ/mol with nitrate concentration. Nanoparticles (18-41 nm) with a faceted structure are prepared by this method. We describe synchrotron in-situ time-resolved XRD experiments in which Mn3O4 nanoparticles are reduced to MnO and subsequently reoxidized in ramping temperature conditions. The temperature of Mn3O4 to MnO reduction decreases as Mn3O4 particle size decreases. On oxidation, 18 nm and smaller MnO nanoparticles formed the intermediate phase Mn5O8 (MnO - Mn3O4 - Mn5O8 Mn2O3 while larger MnO particles oxidized to Mn3O4 then directly to Mn2O3. Fon-nation of Mn3O4 occurred at lower temperature for smaller MnO nanoparticles. Further oxidation to Mn2O3 required higher temperatures for the initially smaller MnO nanoparticles, indicating that the kinetics of forming the new oxide phases is not controlled by diffusion, where smaller distance favors faster reaction, but by nucleation barrier.
引用
收藏
页码:5609 / 5616
页数:8
相关论文
共 26 条
[1]   Nanorods of manganese oxalate:: a single source precursor to different manganese oxide nanoparticles (MnO, Mn2O3, Mn3O4) [J].
Ahmad, T ;
Ramanujachary, KV ;
Lofland, SE ;
Ganguli, AK .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (23) :3406-3410
[2]   Thermal stability and structural transition of metastable Mn5O8:: in situ micro-Raman study [J].
Azzoni, CB ;
Mozzati, MC ;
Galinetto, P ;
Paleari, A ;
Massarotti, V ;
Capsoni, D ;
Bini, M .
SOLID STATE COMMUNICATIONS, 1999, 112 (07) :375-378
[3]   Evaluation of the mechanism of the oxy-dehydrogenation of propane over manganese oxide [J].
Baldi, M ;
Finocchio, E ;
Pistarino, C ;
Busca, G .
APPLIED CATALYSIS A-GENERAL, 1998, 173 (01) :61-74
[4]   Catalytic combustion of C3 hydrocarbons and oxygenates over Mn3O4 [J].
Baldi, M ;
Finocchio, E ;
Milella, F ;
Busca, G .
APPLIED CATALYSIS B-ENVIRONMENTAL, 1998, 16 (01) :43-51
[5]   MAGNETIC STRUCTIRE OF MN304 BY NEUTRON DIFFRACTION [J].
BOUCHER, B ;
BUHL, R ;
PERRIN, M .
JOURNAL OF APPLIED PHYSICS, 1971, 42 (04) :1615-&
[6]   Flash microwave synthesis of Mn3O4-hausmannite nanoparticles [J].
Bousquet-Berthelin, C ;
Stuerga, D .
JOURNAL OF MATERIALS SCIENCE, 2005, 40 (01) :253-255
[7]   Novel oxygen storage components for advanced catalysts for emission control in natural gas fueled vehicles [J].
Chang, YF ;
McCarty, JG .
CATALYSIS TODAY, 1996, 30 (1-3) :163-170
[8]   Synthesis and characterization of Mn3O4 nanoparticles [J].
Chang, YQ ;
Xu, XY ;
Luo, XH ;
Chen, CP ;
Yu, DP .
JOURNAL OF CRYSTAL GROWTH, 2004, 264 (1-3) :232-236
[9]   Particle size effects on the oxidation-reduction behavior of Mn3O4 hausmannite [J].
Gillot, B ;
El Guendouzi, M ;
Laarj, M .
MATERIALS CHEMISTRY AND PHYSICS, 2001, 70 (01) :54-60
[10]  
Greenwood N.N., 1984, CHEM ELEMENTS