A Modified Crank-Nicolson Numerical Scheme for the Flory-Huggins Cahn-Hilliard Model

被引:20
作者
Chen, Wenbin [1 ,2 ]
Jing, Jianyu [2 ]
Wang, Cheng [3 ]
Wang, Xiaoming [4 ,5 ,6 ,7 ]
Wise, Steven M. [8 ]
机构
[1] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Univ Massachusetts, Math Dept, N Dartmouth, MA 02747 USA
[4] Southern Univ Sci & Technol, Int Ctr Math, Shenzhen 518055, Peoples R China
[5] Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
[6] Southern Univ Sci & Technol, Guangdong Prov Key Lab Computat Sci & Mat Design, Shenzhen 518055, Peoples R China
[7] Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen, Shenzhen 518055, Peoples R China
[8] Univ Tennessee, Math Dept, Knoxville, TN 37996 USA
关键词
Cahn-Hilliard equation; Flory Huggins energy potential; positivity preserving; en-ergy stability; second order accuracy; optimal rate convergence estimate; FINITE-DIFFERENCE SCHEME; CONVEX SPLITTING SCHEMES; 2ND-ORDER BDF SCHEME; ENERGY STABLE SCHEME; HELE-SHAW SYSTEM; THIN-FILM MODEL; CONVERGENCE ANALYSIS; ALLEN-CAHN; VARIABLE STEPS; ELEMENT-METHOD;
D O I
10.4208/cicp.OA-2021-0074
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we propose and analyze a second order accurate numerical scheme for the Cahn-Hilliard equation with logarithmic Flory Huggins energy potential. A modified Crank-Nicolson approximation is applied to the logarithmic nonlinear term, while the expansive term is updated by an explicit second order AdamsBashforth extrapolation, and an alternate temporal stencil is used for the surface diffusion term. A nonlinear artificial regularization term is added in the numerical scheme, which ensures the positivity-preserving property, i.e., the numerical value of the phase variable is always between -1 and 1 at a point-wise level. Furthermore, an unconditional energy stability of the numerical scheme is derived, leveraging the special form of the logarithmic approximation term. In addition, an optimal rate convergence estimate is provided for the proposed numerical scheme, with the help of linearized stability analysis. A few numerical results, including both the constant-mobility and solution-dependent mobility flows, are presented to validate the robustness of the proposed numerical scheme.
引用
收藏
页码:60 / 93
页数:34
相关论文
共 68 条
  • [1] Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy
    Abels, Helmut
    Wilke, Mathias
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (11) : 3176 - 3193
  • [2] On a Diffuse Interface Model for Two-Phase Flows of Viscous, Incompressible Fluids with Matched Densities
    Abels, Helmut
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 194 (02) : 463 - 506
  • [3] MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING
    ALLEN, SM
    CAHN, JW
    [J]. ACTA METALLURGICA, 1979, 27 (06): : 1085 - 1095
  • [4] Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility
    Barrett, JW
    Blowey, JF
    [J]. MATHEMATICS OF COMPUTATION, 1999, 68 (226) : 487 - 517
  • [5] CONVERGENCE ANALYSIS OF A SECOND ORDER CONVEX SPLITTING SCHEME FOR THE MODIFIED PHASE FIELD CRYSTAL EQUATION
    Baskaran, A.
    Lowengrub, J. S.
    Wang, C.
    Wise, S. M.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (05) : 2851 - 2873
  • [6] Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation
    Baskaran, Arvind
    Hu, Zhengzheng
    Lowengrub, John S.
    Wang, Cheng
    Wise, Steven M.
    Zhou, Peng
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 250 : 270 - 292
  • [7] Numerical analysis of a model for phase separation of a multi-component alloy
    Blowey, JF
    Copetti, MIM
    Elliott, CM
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1996, 16 (01) : 111 - 139
  • [8] FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY
    CAHN, JW
    HILLIARD, JE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) : 258 - 267
  • [9] Cahn JW., 1996, EUR J APPL MATH, V7, P287, DOI DOI 10.1017/S0956792500002369
  • [10] Chain conformation of polymer melts with associating groups
    Carrillo, Jan-Michael Y.
    Chen, Wei-Ren
    Wang, Zhe
    Sumpter, Bobby G.
    Wang, Yangyang
    [J]. JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (03):