Gradient recovery for singularly perturbed boundary value problems I: One-dimensional convection-diffusion

被引:10
作者
Roos, HG [1 ]
Linss, T [1 ]
机构
[1] Tech Univ Dresden, Inst Numer Math, D-01062 Dresden, Germany
关键词
convection-diffusion problems; finite element method; singular perturbation; superconvergence; gradient recovery; Shishkin-type mesh;
D O I
10.1007/s006070170033
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider a Galerkin finite element method that uses piecewise linears on a class of Shishkin-type meshes for a model singularly perturbed convection-diffusion problem. We pursue two approaches in constructing superconvergent approximations of the gradient. The first approach uses superconvergence points for the derivative, while the second one combines the consistency of a recovery operator with the superconvergence property of an interpolant. Numerical experiments support our theoretical results.
引用
收藏
页码:163 / 178
页数:16
相关论文
共 18 条
[1]   A posteriori error estimation in finite element analysis [J].
Ainsworth, M ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) :1-88
[2]  
ANDREEV VB, 1996, ZH VYCH MAT MAT FIZ, V36, P101
[3]  
Dobrowolski M., 1997, Zeitschrift fur Analysis und ihre Anwendungen, V16, P1001, DOI 10.4171/ZAA/801
[4]  
KOPTEVA NV, 1999, COMP MATH MATH PHYS, V39, P1594
[5]  
Krizek M., 1998, Finite Element Methods: Superconvergence, Post-Processing and a Posteriori Estimates
[6]  
Lakhany AM, 1998, LECT NOTES PURE APPL, V196, P195
[7]   Pointwise convergence of approximations to a convection-diffusion equation on a Shishkin mesh [J].
Lenferink, W .
APPLIED NUMERICAL MATHEMATICS, 2000, 32 (01) :69-86
[8]   Uniform pointwise convergence on Shishkin-type meshes for quasi-linear convection-diffusion problems [J].
Linss, T ;
Roos, HG ;
Vulanovic, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (03) :897-912
[9]  
LINSS T, 2000, METHODS PATIAL DIFFE, V16, P426
[10]  
LINSS T, 1999, MATNNM081999 TU DRES