ON A GEOMETRIC FRAMEWORK FOR LAGRANGIAN SUPERMECHANICS

被引:2
|
作者
Bruce, Andrew James [1 ]
Grabowska, Katarzyna [2 ]
Moreno, Giovanni [3 ]
机构
[1] Univ Luxembourg, Math Res Unit, Maison Nombre 6,Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
[2] Univ Warsaw, Fac Phys, Pasteura 5, PL-02093 Warsaw, Poland
[3] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
来源
JOURNAL OF GEOMETRIC MECHANICS | 2017年 / 9卷 / 04期
关键词
Supermechanics; supermanifolds; Lagrangian systems; Tulczyjew triples; curves; SYMMETRIES; MECHANICS; DYNAMICS;
D O I
10.3934/jgm.2017016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We re-examine classical mechanics with both commuting and anticommuting degrees of freedom. We do this by defining the phase dynamics of a general Lagrangian system as an implicit differential equation in the spirit of Tulczyjew. Rather than parametrising our basic degrees of freedom by a specified Grassmann algebra, we use arbitrary supermanifolds by following the categorical approach to supermanifolds.
引用
收藏
页码:411 / 437
页数:27
相关论文
共 50 条
  • [1] Geometric formulation of higher-order Lagrangian systems in supermechanics
    Carinena, JF
    Figueroa, H
    ACTA APPLICANDAE MATHEMATICAE, 1998, 51 (01) : 25 - 58
  • [2] Geometric Formulation of Higher-Order Lagrangian Systems in Supermechanics
    José F. Cariñena
    Héctor Figueroa
    Acta Applicandae Mathematica, 1998, 51 : 25 - 58
  • [3] Geometric formulation of higher-order Lagrangian systems in supermechanics
    Universidad de Zaragoza, Zaragoza, Spain
    Acta Appl Math, 1 (25-58):
  • [4] ON THE INVERSE PROBLEM OF LAGRANGIAN SUPERMECHANICS
    IBORT, LA
    LANDI, G
    MARIN-SOLANO, J
    MARMO, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (20): : 3565 - 3576
  • [5] Higher order Lagrangian supermechanics
    Carinena, JF
    Figueroa, H
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 910 - 914
  • [6] Hamiltonian versus Lagrangian formulations of supermechanics
    CariOena, J. F.
    Figueroa, H.
    Journal of Physics A: Mathematical and General, 30 (08):
  • [7] Hamiltonian versus Lagrangian formulations of supermechanics
    Carinena, JF
    Figueroa, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (08): : 2705 - 2724
  • [8] Test particles behavior in the framework of a Lagrangian geometric theory with propagating torsion
    Aprea, G
    Montani, G
    Ruffini, R
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2003, 12 (10): : 1875 - 1887
  • [9] A geometric framework for nonconvex optimization duality using augmented lagrangian functions
    Angelia Nedich
    Asuman Ozdaglar
    Journal of Global Optimization, 2008, 40 : 545 - 573
  • [10] A geometric framework for nonconvex optimization duality using augmented lagrangian functions
    Nedich, Angelia
    Ozdaglar, Asuman
    JOURNAL OF GLOBAL OPTIMIZATION, 2008, 40 (04) : 545 - 573