ON THE POINCARE LEMMA ON DOMAINS

被引:1
作者
Bousquet, Pierre [1 ]
Hoang Phuong Nguyen [1 ]
机构
[1] Univ Paul Sabatier, Inst Math Toulouse, CNRS UMR 5219, F-31062 Toulouse 9, France
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2022年 / 147卷 / 01期
关键词
EQUATION;
D O I
10.1007/s11854-022-0210-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the Poincare lemma on a domain Omega with a Dirichlet boundary condition under a natural assumption on the regularity of Omega: a closed form f in the Holder space C-r,C-a is the differential of a C-r +1,C-alpha form, provided that the domain Omega itself is C-r +1,C-alpha The proof is based on a construction by approximation, together with a duality argument, in the spirit of the strategy introduced by Bourgain and Brezis [3] to solve the divergence equation in the Sobolev space W-0(1,p) (Omega). We also establish the corresponding statement in the setting of higher order Sobolev spaces.
引用
收藏
页码:99 / 163
页数:65
相关论文
共 17 条
[1]  
Axelsson A, 2004, TRENDS MATH, P3
[2]  
BOGOVSKII ME, 1979, DOKL AKAD NAUK SSSR+, V248, P1037
[3]  
Bourgain J, 2003, J AM MATH SOC, V16, P393
[4]   A limiting case for the divergence equation [J].
Bousquet, Pierre ;
Mironescu, Petru ;
Russ, Emmanuel .
MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (1-2) :427-460
[5]   On Bogovskii and regularized Poincare integral operators for de Rham complexes on Lipschitz domains [J].
Costabel, Martin ;
McIntosh, Alan .
MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (02) :297-320
[6]  
Csato G, 2012, PROG NONLINEAR DIFFE, V83, P1, DOI 10.1007/978-0-8176-8313-9
[7]   On the representation as exterior differentials of closed forms with L1-coefficients [J].
Curca, Eduard .
COMPTES RENDUS MATHEMATIQUE, 2019, 357 (04) :355-359
[8]  
Gilbarg D., 2001, Elliptic Partial Differential Equations of Second Order, V224, DOI DOI 10.1007/978-3-642-61798-0
[9]  
Grisvard P, 2011, CLASS APPL MATH, V69, P1, DOI 10.1137/1.9781611972030
[10]  
Mitrea D., 2001, LAYER POTENTIALS HOD, DOI [10.1090/memo/0713, DOI 10.1090/MEMO/0713]