Rasmussen invariant, slice-Bennequin inequality, and sliceness of knots

被引:46
作者
Shumakovitch, Alexander N. [1 ]
机构
[1] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
关键词
Rasmussen invariant; slice-Bennequin inequality; slice genus; slice knots; quasipositive knots;
D O I
10.1142/S0218216507005889
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use recently introduced Rasmussen invariant to find knots that are topologically locally-flatly slice but not smoothly slice. We note that this invariant can be used to give a combinatorial proof of the slice-Bennequin inequality. Finally, we compute the Rasmussen invariant for quasipositive knots and show that most of our examples of non-slice knots are not quasipositive and, to the best of our knowledge, were previously unknown.
引用
收藏
页码:1403 / 1412
页数:10
相关论文
共 24 条
[1]  
Bar-Natan Dror, 2002, Algebr. Geom. Topol., V2, P337, DOI 10.2140/agt.2002.2.337
[2]   A SURGERY SEQUENCE IN DIMENSION 4 - THE RELATIONS WITH KNOT CONCORDANCE [J].
FREEDMAN, MH .
INVENTIONES MATHEMATICAE, 1982, 68 (02) :195-226
[3]  
HEDDEN M, ARXIVMATH0512348
[4]  
HOSTE J, KNOTSCAPE INTERACTIV
[5]   The Rasmussen invariants and the sharper slice-Bennequin inequality on knots [J].
Kawamura, Tomomi .
TOPOLOGY, 2007, 46 (01) :29-38
[6]   Patterns in knot cohomology, I [J].
Khovanov, M .
EXPERIMENTAL MATHEMATICS, 2003, 12 (03) :365-374
[7]   A categorification of the Jones polynomial [J].
Khovanov, M .
DUKE MATHEMATICAL JOURNAL, 2000, 101 (03) :359-426
[8]   Link homology and Frobenius extensions [J].
Khovanov, Mikhail .
FUNDAMENTA MATHEMATICAE, 2006, 190 :179-190
[9]   GAUGE-THEORY FOR EMBEDDED SURFACES .1. [J].
KRONHEIMER, PB ;
MROWKA, TS .
TOPOLOGY, 1993, 32 (04) :773-826
[10]   An endomorphism of the Khovanov invariant [J].
Lee, ES .
ADVANCES IN MATHEMATICS, 2005, 197 (02) :554-586