Zeta function and regularized determinant on a disc and on a cone

被引:32
|
作者
Spreafico, A [1 ]
机构
[1] Univ Sao Paulo, ICMC, BR-13560970 Sao Carlos, SP, Brazil
关键词
zeta function; elliptic operators; regularization;
D O I
10.1016/j.geomphys.2004.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give formulas for the analytic extension of the zeta function of the induced Laplacian L on a disc and on a cone. This allows the explicit computation of the value of the zeta function and of its derivative at the origin, and hence we get a formula for the regularized determinant of L. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:355 / 371
页数:17
相关论文
共 50 条
  • [1] Zeta Function on a Generalised Cone
    Guido Cognola
    Sergio Zerbini
    Letters in Mathematical Physics, 1997, 42 : 95 - 101
  • [2] Zeta-function on a generalised cone
    Cognola, G
    Zerbini, S
    LETTERS IN MATHEMATICAL PHYSICS, 1997, 42 (01) : 95 - 101
  • [3] A new determinant expression for the weighted Bartholdi zeta function of a digraph
    Sato, Iwao
    Mitsuhasi, Hideo
    Morita, Hideaki
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (01):
  • [4] ZETA-REGULARIZED PRODUCTS
    QUINE, JR
    HEYDARI, SH
    SONG, RY
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (01) : 213 - 231
  • [5] The minimum regularized covariance determinant estimator
    Boudt, Kris
    Rousseeuw, Peter J.
    Vanduffel, Steven
    Verdonck, Tim
    STATISTICS AND COMPUTING, 2020, 30 (01) : 113 - 128
  • [6] The minimum regularized covariance determinant estimator
    Kris Boudt
    Peter J. Rousseeuw
    Steven Vanduffel
    Tim Verdonck
    Statistics and Computing, 2020, 30 : 113 - 128
  • [7] Spectral Analysis and Zeta Determinant on the Deformed Spheres
    M. Spreafico
    S. Zerbini
    Communications in Mathematical Physics, 2007, 273 : 677 - 704
  • [8] Profinite groups in which the probabilistic zeta function coincides with the subgroup zeta function
    Damian, E.
    Lucchini, A.
    JOURNAL OF ALGEBRA, 2014, 402 : 92 - 119
  • [9] The zeta function of a simplicial complex
    Anders Björner
    Karanbir S. Sarkaria
    Israel Journal of Mathematics, 1998, 103 : 29 - 40
  • [10] Degenerate Euler zeta function
    T. Kim
    Russian Journal of Mathematical Physics, 2015, 22 : 469 - 472