Optimally regularised kernel Fisher discriminant classification

被引:18
|
作者
Saadi, Kamel [1 ]
Talbot, Nicola L. C. [1 ]
Cawley, Gavin C. [1 ]
机构
[1] Univ E Anglia, Sch Comp Sci, Norwich NR4 7TJ, Norfolk, England
基金
英国生物技术与生命科学研究理事会;
关键词
model selection; cross-validation; least-squares support vector machine;
D O I
10.1016/j.neunet.2007.05.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mika, Ratsch, Weston, Scholkopf and Muller [Mika, S., Ratsch, G.. Weston, J., Scholkopf, B., & Muller, K.-R. (1999). Fisher discriminant analysis with kernels. In Neural networks for signal processing: Vol. IX (pp. 41-48). New York: IEEE Press] introduce a non-linear formulation of Fisher's linear discriminant, based on the now familiar "kernel trick", demonstrating state-of-the-art performance on a wide range of real-world benchmark datasets. In this paper, we extend an existing analytical expression for the leave-one-out cross-validation error [Cawley, G. C., & Talbot, N. L. C. (2003b). Efficient leave-one-out cross-validation of kernel Fisher discriminant classifiers. Pattern Recognition, 36(11), 2585-2592] such that the leave-one-out error can be re-estimated following a change in the value of the regularisation parameter with a computational complexity of only O(l(2)) operations, which is substantially less than the O(l(3)) operations required for the basic training algorithm. This allows the regularisation parameter to be tuned at an essentially negligible computational cost. This is achieved by performing the discriminant analysis in canonical form. The proposed method is therefore a useful component of a model selection strategy for this class of kernel machines that alternates between updates of the kernel and regularisation parameters. Results obtained on real-world and synthetic benchmark datasets indicate that the proposed method is competitive with model selection based on k-fold cross-validation in terms of generalisation, whilst being considerably faster. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:832 / 841
页数:10
相关论文
共 50 条
  • [1] Optimally regularised kernel Fisher discriminant analysis
    Saadi, K
    Talbot, NLC
    Cawley, GC
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, 2004, : 427 - 430
  • [2] A REVIEW OF KERNEL FISHER DISCRIMINANT ANALYSIS FOR STATISTICAL CLASSIFICATION
    Louw, N.
    Steel, S. J.
    SOUTH AFRICAN STATISTICAL JOURNAL, 2005, 39 (01) : 1 - 21
  • [3] A method of Kernel Fisher Discriminant for multi-class classification
    Xu, Yifan
    Li, Fang
    Hu, Tao
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 578 - 578
  • [4] Kernel Fisher discriminant for shape-based classification in epilepsy
    Kodipaka, S.
    Vemuri, B. C.
    Rangarajan, A.
    Leonard, C. M.
    Schmallfuss, I.
    Eisenschenk, S.
    MEDICAL IMAGE ANALYSIS, 2007, 11 (01) : 79 - 90
  • [5] Indefinite Kernel Fisher Discriminant
    Haasdonk, Bernard
    Pekalska, Elzbieta
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 2052 - 2055
  • [6] Improved evolving kernel of fisher's discriminant analysis for classification problem
    Sayed, Hanaa E.
    Gabbar, Hossam A.
    Miyazaki, Shigeji
    Journal of Applied Sciences, 2009, 9 (12) : 2313 - 2318
  • [7] Material Classification for Printed Circuit Boards by Kernel Fisher Discriminant Analysis
    Horiuchi, Takahiko
    Suzuki, Yuhei
    Tominaga, Shoji
    COMPUTATIONAL COLOR IMAGING, 2011, 6626 : 152 - 164
  • [8] SAR Image Texture Classification Based on Kernel Fisher Discriminant Analysis
    He, Binbin
    Tong, Ling
    Han, Xili
    Xu, Wenbo
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 3127 - 3129
  • [9] Sparse Kernel Fisher Discriminant Analysis
    Xing, HJ
    Yang, YJ
    Wang, Y
    Hu, BG
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 1, PROCEEDINGS, 2005, 3496 : 824 - 830
  • [10] A reformative kernel Fisher discriminant analysis
    Xu, Y
    Yang, JY
    Yang, J
    PATTERN RECOGNITION, 2004, 37 (06) : 1299 - 1302