Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons

被引:324
作者
Llinas, Juan Pablo [1 ,2 ]
Fairbrother, Andrew [3 ]
Barin, Gabriela Borin [3 ]
Shi, Wu [2 ,4 ]
Lee, Kyunghoon [1 ,2 ]
Wu, Shuang [1 ,2 ]
Choi, Byung Yong [1 ,5 ]
Braganza, Rohit [1 ,2 ]
Lear, Jordan [1 ]
Kau, Nicholas [4 ]
Choi, Wonwoo [4 ]
Chen, Chen [4 ]
Pedramrazi, Zahra [4 ]
Dumslaff, Tim [6 ]
Narita, Akimitsu [6 ]
Feng, Xinliang [7 ]
Muellen, Klaus [6 ]
Fischer, Felix [2 ,8 ,9 ,10 ]
Zettl, Alex [2 ,4 ,9 ,10 ]
Ruffieux, Pascal [3 ]
Yablonovitch, Eli [1 ,2 ,9 ,10 ]
Crommie, Michael [2 ,4 ,9 ,10 ]
Fasel, Roman [3 ,11 ]
Bokor, Jeffrey [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Empa, Swiss Fed Labs Mat Sci & Technol, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
[4] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[5] Samsung Elect Co Ltd, Flash PA Team, Semicond Memory Business, Gyeonggi Do, South Korea
[6] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
[7] Tech Univ Dresden, Ctr Adv Elect Dresden, Dept Chem & Food Chem, Mommsenstr 4, D-01062 Dresden, Germany
[8] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[9] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA
[10] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[11] Univ Bern, Dept Chem & Biochem, Freiestr 3, CH-3012 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
ON-SURFACE SYNTHESIS; CARBON; DEPOSITION; TRANSPORT;
D O I
10.1038/s41467-017-00734-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultr-alow power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L-ch similar to 20 nm) devices with a thin, high-kappa gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I-on > 1 mu A at V-d = -1 V) and high I-on/I-off similar to 10(5) at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.
引用
收藏
页数:6
相关论文
共 36 条
[1]   Vapor-Phase Transport Deposition, Characterization, and Applications of Large Nanographenes [J].
Abbas, Ahmad N. ;
Liu, Bilu ;
Narita, Akimitsu ;
Doessel, Lukas F. ;
Yang, Bo ;
Zhang, Wen ;
Tang, Jianshi ;
Wang, Kang L. ;
Raeder, Hans Joachim ;
Feng, Xinliang ;
Muellen, Klaus ;
Zhou, Chongwu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (13) :4453-4459
[2]   Deposition, Characterization, and Thin-Film-Based Chemical Sensing of Ultra-long Chemically Synthesized Graphene Nanoribbons [J].
Abbas, Ahmad N. ;
Liu, Gang ;
Narita, Akimitsu ;
Orosco, Manuel ;
Feng, Xinliang ;
Muellen, Klaus ;
Zhou, Chongwu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (21) :7555-7558
[3]   Tunneling versus thermionic emission in one-dimensional semiconductors [J].
Appenzeller, J ;
Radosavljevic, M ;
Knoch, J ;
Avouris, P .
PHYSICAL REVIEW LETTERS, 2004, 92 (04) :4
[4]   Field-modulated carrier transport in carbon nanotube transistors [J].
Appenzeller, J ;
Knoch, J ;
Derycke, V ;
Martel, R ;
Wind, S ;
Avouris, P .
PHYSICAL REVIEW LETTERS, 2002, 89 (12) :126801-126801
[5]   Bottom-up graphene nanoribbon field-effect transistors [J].
Bennett, Patrick B. ;
Pedramrazi, Zahra ;
Madani, Ali ;
Chen, Yen-Chia ;
de Oteyza, Dimas G. ;
Chen, Chen ;
Fischer, Felix R. ;
Crommie, Michael F. ;
Bokor, Jeffrey .
APPLIED PHYSICS LETTERS, 2013, 103 (25)
[6]  
Cai JM, 2014, NAT NANOTECHNOL, V9, P896, DOI [10.1038/NNANO.2014.184, 10.1038/nnano.2014.184]
[7]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[8]  
Chen YC, 2015, NAT NANOTECHNOL, V10, P156, DOI [10.1038/NNANO.2014.307, 10.1038/nnano.2014.307]
[9]   Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors [J].
Chen, Yen-Chia ;
de Oteyza, Dimas G. ;
Pedramrazi, Zahra ;
Chen, Chen ;
Fischer, Felix R. ;
Crommie, Michael F. .
ACS NANO, 2013, 7 (07) :6123-6128
[10]   The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors [J].
Chen, ZH ;
Appenzeller, J ;
Knoch, J ;
Lin, YM ;
Avouris, P .
NANO LETTERS, 2005, 5 (07) :1497-1502