A posteriori error estimates for the finite element approximation of eigenvalue problems

被引:89
作者
Durán, RG
Padra, C
Rodríguez, R
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[2] Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[3] Univ Concepcion, Dept Ingn Matemat, GI2MA, Concepcion, Chile
关键词
eigenvalue problems; finite elements; a posteriori error estimates;
D O I
10.1142/S0218202503002878
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a posteriori error estimators for the linear finite element approximation of second-order elliptic eigenvalue problems in two or three dimensions. First, we give a simple proof of the equivalence, up to higher order terms, between the error and a residual type error estimator. Second, we prove that the volumetric part of the residual is dominated by a constant times the edge or face residuals, again up to higher order terms. This result was not known for eigenvalue problems.
引用
收藏
页码:1219 / 1229
页数:11
相关论文
共 15 条
[1]  
[Anonymous], POSTERIORI ERROR EST
[2]   Locally adapted tetrahedral meshes using bisection [J].
Arnold, DN ;
Mukherjee, A ;
Pouly, L .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (02) :431-448
[3]  
Babuska I., 1991, Finite Element Methods, V2, P641
[4]   Edge residuals dominate A posteriori error estimates for low order finite element methods [J].
Carsten, C ;
Verfürth, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (05) :1571-1587
[5]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
[6]   A posteriori and a priori error analysis or finite element approximations of self-adjoint elliptic eigenvalue problems [J].
Larson, MG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (02) :608-625
[7]  
MILLER KG, 1987, PALEOCEANOGRAPHY, V1, P1
[8]  
NOCHETTO RH, 1995, MATH COMPUT, V64, P1, DOI 10.1090/S0025-5718-1995-1270622-3
[9]  
Raviart PA., 1983, Introduction a L'analyse Numerique des equations aux Derivees Partielles