Discrete and continuous green energy on compact manifolds

被引:18
作者
Beltran, Carlos [1 ]
Corral, Nuria [1 ]
Criado del Rey, Juan G. [1 ]
机构
[1] Univ Cantabria, Fac Ciencias, Dpto Matemat Estad & Computac, Avda Castros S-N, E-39005 Santander, Cantabria, Spain
关键词
Green energy; Well-distributed points; Harmonic manifold; FINITE POINT-SETS; RIESZ ENERGY; DISTRIBUTING POINTS; LOGARITHMIC ENERGY; HECKE OPERATORS; SPHERE; ASYMPTOTICS; DISCREPANCY; DISTANCES; TERM;
D O I
10.1016/j.jat.2018.09.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we study the role of the Green function for the Laplacian in a compact Riemannian manifold as a tool for obtaining well-distributed points. In particular, we prove that a sequence of minimizers for the Green energy is asymptotically uniformly distributed. We pay special attention to the case of locally harmonic manifolds. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:160 / 185
页数:26
相关论文
共 54 条
[1]  
Aistleitner C, 2012, DISCRETE COMPUT GEOM, V48, P990, DOI 10.1007/s00454-012-9451-3
[2]  
[Anonymous], 2015, THESIS
[3]  
AUBIN T., 1998, SPRINGER MONOGRAPHS
[5]  
BECK J, 1984, LECT NOTES MATH, V1068, P1
[6]   Energy and discrepancy of rotationally invariant determinantal point processes in high dimensional spheres [J].
Beltran, Carlos ;
Marzo, Jordi ;
Ortega-Cerda, Joaquim .
JOURNAL OF COMPLEXITY, 2016, 37 :76-109
[7]   A Facility Location Formulation for Stable Polynomials and Elliptic Fekete Points [J].
Beltran, Carlos .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (01) :125-157
[8]  
Beltrin Carlos, 2013, FDN COMPUTATIONAL MA, V403, P1
[9]  
Besse A. L., 1978, ERGEBNISSE MATH IHRE, V2
[10]   Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere [J].
Betermin, Laurent ;
Sandier, Etienne .
CONSTRUCTIVE APPROXIMATION, 2018, 47 (01) :39-74