Semantic-based padding in convolutional neural networks for improving the performance in natural language processing. A case of study in sentiment analysis

被引:60
作者
Gimenez, Maite [1 ]
Palanca, Javier [2 ]
Botti, Vicent [1 ,2 ]
机构
[1] Univ Politecn Valencia, Dept Sistemas Informat & Comp, Valencia, Spain
[2] Univ Politecn Valencia, Valencian Res Inst Artificial Intelligence VRAIN, Valencia, Spain
关键词
Natural language processing; Convolutional neural networks; Padding;
D O I
10.1016/j.neucom.2019.08.096
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, a methodology for applying semantic-based padding in Convolutional Neural Networks for Natural Language Processing tasks is proposed. Semantic-based padding takes advantage of the unused space required for having a fixed-size input matrix in a Convolutional Network effectively, using words present in the sentence. The methodology proposed has been evaluated intensively in Sentiment Analysis tasks using a variety of word embeddings. In all the experimentation carried out the proposed semantic-based padding improved the results achieved when no padding strategy is applied. Moreover, when the model used a pre-trained word embeddings, the performance of the state of the art has been surpassed. (C) 2019 Published by Elsevier B.V.
引用
收藏
页码:315 / 323
页数:9
相关论文
共 53 条
[11]  
Barbieri Francesco, 2016, P 3 IT C COMP LING C
[12]  
Barnes Jeremy, 2017, ARXIV170904219
[13]   LEARNING LONG-TERM DEPENDENCIES WITH GRADIENT DESCENT IS DIFFICULT [J].
BENGIO, Y ;
SIMARD, P ;
FRASCONI, P .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02) :157-166
[14]   A neural probabilistic language model [J].
Bengio, Y ;
Ducharme, R ;
Vincent, P ;
Jauvin, C .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (06) :1137-1155
[15]  
Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001
[16]   Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN [J].
Chen, Tao ;
Xu, Ruifeng ;
He, Yulan ;
Wang, Xuan .
EXPERT SYSTEMS WITH APPLICATIONS, 2017, 72 :221-230
[17]  
Christopher Potts, 2011, P 49 ANN M ASS COMP, P142
[18]  
Collobert R, 2011, J MACH LEARN RES, V12, P2493
[19]  
De Winter J, 2013, Pract. Assess. Res. Eval., V18, P10
[20]  
Devin M., 2015, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems