Fractional Laplacian in bounded domains

被引:185
作者
Zoia, A.
Rosso, A.
Kardar, M.
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Politecn Milan, Dept Nucl Engn, I-20133 Milan, Italy
[3] Univ Paris Sud, Lab Phys Theor & Modeles Stat, CNRS, F-91405 Orsay, France
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 02期
关键词
D O I
10.1103/PhysRevE.76.021116
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The fractional Laplacian operator -(-Delta)(alpha/2) appears in a wide class of physical systems, including Levy flights and stochastic interfaces. In this paper, we provide a discretized version of this operator which is well suited to deal with boundary conditions on a finite interval. The implementation of boundary conditions is justified by appealing to two physical models, namely, hopping particles and elastic springs. The eigenvalues and eigenfunctions in a bounded domain are then obtained numerically for different boundary conditions. Some analytical results concerning the structure of the eigenvalue spectrum are also obtained.
引用
收藏
页数:11
相关论文
共 54 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS, P231
[2]  
Antal T, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.046140
[3]   On the shape of the ground state eigenfunction for stable processes [J].
Banuelos, R ;
Kulczycki, T ;
Mendez-Hernandez, PJ .
POTENTIAL ANALYSIS, 2006, 24 (03) :205-221
[4]   THE FISHER-HARTWIG CONJECTURE AND TOEPLITZ EIGENVALUES [J].
BASOR, EL ;
MORRISON, KE .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 202 :129-142
[5]  
Böttcher A, 2007, OPER THEORY ADV APPL, V171, P73
[6]   Properties of Levy flights on an interval with absorbing boundaries [J].
Buldyrev, SV ;
Gitterman, M ;
Havlin, S ;
Kazakov, AY ;
da Luz, MGE ;
Raposo, EP ;
Stanley, HE ;
Viswanathan, GM .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 302 (1-4) :148-161
[7]   Average time spent by Levy flights and walks on an interval with absorbing boundaries [J].
Buldyrev, SV ;
Havlin, S ;
Kazakov, AY ;
da Luz, MGE ;
Raposo, EP ;
Stanley, HE ;
Viswanathan, GM .
PHYSICAL REVIEW E, 2001, 64 (04) :11-411081
[8]  
Chechkin AV, 2006, ADV CHEM PHYS, V133, P439
[9]   Levy flights in a steep potential well [J].
Chechkin, AV ;
Gonchar, VY ;
Klafter, J ;
Metzler, R ;
Tanatarov, LV .
JOURNAL OF STATISTICAL PHYSICS, 2004, 115 (5-6) :1505-1535
[10]   First passage and arrival time densities for Levy flights and the failure of the method of images [J].
Chechkin, AV ;
Metzler, R ;
Gonchar, VY ;
Klafter, J ;
Tanatarov, LV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (41) :L537-L544