Directional detection of dark matter using solid-state quantum sensing

被引:10
作者
Ebadi, Reza [1 ,2 ]
Marshall, Mason C. [2 ,3 ]
Phillips, David F. [4 ]
Cremer, Johannes [2 ,3 ,5 ]
Zhou, Tao [6 ]
Titze, Michael [7 ]
Kehayias, Pauli [7 ]
Saleh Ziabari, Maziar [7 ]
Delegan, Nazar [8 ,9 ]
Rajendran, Surjeet [10 ]
Sushkov, Alexander O. [11 ,12 ,13 ]
Heremans, F. Joseph [8 ,9 ,14 ]
Bielejec, Edward S. [7 ]
Holt, Martin V. [6 ]
Walsworth, Ronald L. [1 ,2 ,3 ]
机构
[1] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[2] Univ Maryland, Quantum Technol Ctr, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[4] Harvard & Smithsonian, Ctr Astrophys, Cambridge, MA 02138 USA
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[6] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[7] Sandia Natl Labs, Albuquerque, NM 87123 USA
[8] Argonne Natl Lab, Ctr Mol Engn, Lemont, IL 60439 USA
[9] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
[10] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA
[11] Boston Univ, Dept Phys, Boston, MA 02215 USA
[12] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[13] Boston Univ, Photon Ctr, Boston, MA 02215 USA
[14] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
来源
AVS QUANTUM SCIENCE | 2022年 / 4卷 / 04期
关键词
NITROGEN-VACANCY CENTERS; STIMULATED-EMISSION DEPLETION; NUCLEAR TRACK DETECTORS; RAY NANOPROBE BEAMLINE; MILKY-WAY DISC; MAGNETIC-RESONANCE; NEUTRINO BACKGROUNDS; ELECTRONIC SPINS; ADAPTIVE OPTICS; VERTICAL WAVES;
D O I
10.1116/5.0117301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Next-generation dark matter (DM) detectors searching for weakly interacting massive particles (WIMPs) will be sensitive to coherent scattering from solar neutrinos, demanding an efficient background-signal discrimination tool. Directional detectors improve sensitivity to WIMP DM despite the irreducible neutrino background. Wide-bandgap semiconductors offer a path to directional detection in a high-density target material. A detector of this type operates in a hybrid mode. The WIMP or neutrino-induced nuclear recoil is detected using real-time charge, phonon, or photon collection. The directional signal, however, is imprinted as a durable sub-micron damage track in the lattice structure. This directional signal can be read out by a variety of atomic physics techniques, from point defect quantum sensing to x-ray microscopy. In this Review, we present the detector principle as well as the status of the experimental techniques required for directional readout of nuclear recoil tracks. Specifically, we focus on diamond as a target material; it is both a leading platform for emerging quantum technologies and a promising component of next-generation semiconductor electronics. Based on the development and demonstration of directional readout in diamond over the next decade, a future WIMP detector will leverage or motivate advances in multiple disciplines toward precision dark matter and neutrino physics.
引用
收藏
页数:19
相关论文
共 233 条
[1]  
Aalbers Agostini F., 2016, J. Cosmol. Astropart. Phys., V11, P017, DOI [10.1088/1475-7516/2016/11/017, DOI 10.1088/1475-7516/2016/11/017]
[2]   DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS [J].
Aalseth, C. E. ;
Acerbi, F. ;
Agnes, P. ;
Albuquerque, I. F. M. ;
Alexander, T. ;
Alici, A. ;
Alton, A. K. ;
Antonioli, P. ;
Arcelli, S. ;
Ardito, R. ;
Arnquist, I. J. ;
Asner, D. M. ;
Ave, M. ;
Back, H. O. ;
Barrado Olmedo, A. I. ;
Batignani, G. ;
Bertoldo, E. ;
Bettarini, S. ;
Bisogni, M. G. ;
Bocci, V. ;
Bondar, A. ;
Bonfini, G. ;
Bonivento, W. ;
Bossa, M. ;
Bottino, B. ;
Boulay, M. ;
Bunker, R. ;
Bussino, S. ;
Buzulutskov, A. ;
Cadeddu, M. ;
Cadoni, M. ;
Caminata, A. ;
Canci, N. ;
Candela, A. ;
Cantini, C. ;
Caravati, M. ;
Cariello, M. ;
Carlini, M. ;
Carpinelli, M. ;
Castellani, A. ;
Catalanotti, S. ;
Cataudella, V. ;
Cavalcante, P. ;
Cavuoti, S. ;
Cereseto, R. ;
Chepurnov, A. ;
Cicalo, C. ;
Cifarelli, L. ;
Citterio, M. ;
Cocco, A. G. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (03)
[3]  
Abdullah M., 2022, 2022 SNOWMASS SUMMER
[4]   Heavy bino dark matter and collider signals in the MSSM with vectorlike fourth-generation particles [J].
Abdullah, Mohammad ;
Feng, Jonathan L. ;
Iwamoto, Sho ;
Lillard, Benjamin .
PHYSICAL REVIEW D, 2016, 94 (09)
[5]   Fabrication and characterization of a co-planar detector in diamond for low energy single ion implantation [J].
Abraham, J. B. S. ;
Aguirre, B. A. ;
Pacheco, J. L. ;
Vizkelethy, G. ;
Bielejec, E. .
APPLIED PHYSICS LETTERS, 2016, 109 (06)
[6]  
Acevedo JF, 2023, Arxiv, DOI arXiv:2105.06473
[7]   Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond [J].
Acosta, V. M. ;
Bauch, E. ;
Ledbetter, M. P. ;
Waxman, A. ;
Bouchard, L-S. ;
Budker, D. .
PHYSICAL REVIEW LETTERS, 2010, 104 (07)
[8]   Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications [J].
Acosta, V. M. ;
Bauch, E. ;
Ledbetter, M. P. ;
Santori, C. ;
Fu, K. -M. C. ;
Barclay, P. E. ;
Beausoleil, R. G. ;
Linget, H. ;
Roch, J. F. ;
Treussart, F. ;
Chemerisov, S. ;
Gawlik, W. ;
Budker, D. .
PHYSICAL REVIEW B, 2009, 80 (11)
[9]   Discovery potential for directional Dark Matter detection with nuclear emulsions [J].
Agafonova, N. ;
Aleksandrov, A. ;
Anokhina, A. ;
Asada, T. ;
Ashikhmin, V. V. ;
Bodnarchuk, I. ;
Buonaura, A. ;
Chernyavskii, M. ;
Chukanov, A. ;
D'Ambrosio, N. ;
De Lellis, G. ;
Di Crescenzo, A. ;
Di Marco, N. ;
Dmitrievski, S. ;
Enikeev, R. I. ;
Fini, R. A. ;
Galati, G. ;
Gentile, V. ;
Gorbunov, S. ;
Gornushkin, Y. ;
Guler, A. M. ;
Ichiki, H. ;
Katsuragawa, T. ;
Konovalova, N. ;
Kuge, K. ;
Lauria, A. ;
Lee, K. Y. ;
Lista, L. ;
Malgin, A. S. ;
Managadze, A. ;
Monacelli, P. ;
Montesi, M. C. ;
Naka, T. ;
Okateva, N. ;
Park, B. D. ;
Podgrudkov, D. ;
Polukhina, N. ;
Pupilli, F. ;
Roganova, T. ;
Rogozhnikov, A. ;
Rosa, G. ;
Ryazhskaya, O. G. ;
Sato, O. ;
Shakiryanova, I. R. ;
Shchedrina, T. ;
Sirignano, C. ;
Sohn, J. Y. ;
Sotnikov, A. ;
Starkov, N. ;
Strolin, P. .
EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (07)
[10]   Projected sensitivity of the SuperCDMS SNOLAB experiment [J].
Agnese, R. ;
Anderson, A. J. ;
Aramaki, T. ;
Arnquist, I. ;
Baker, W. ;
Barker, D. ;
Thakur, R. Basu ;
Bauer, D. A. ;
Borgland, A. ;
Bowles, M. A. ;
Brink, P. L. ;
Bunker, R. ;
Cabrera, B. ;
Caldwell, D. O. ;
Calkins, R. ;
Cartaro, C. ;
Cerdeno, D. G. ;
Chagani, H. ;
Chen, Y. ;
Cooley, J. ;
Cornell, B. ;
Cushman, P. ;
Daal, M. ;
Di Stefano, P. C. F. ;
Doughty, T. ;
Esteban, L. ;
Fallows, S. ;
Figueroa-Feliciano, E. ;
Fritts, M. ;
Gerbier, G. ;
Ghaith, M. ;
Godfrey, G. L. ;
Golwala, S. R. ;
Hall, J. ;
Harris, H. R. ;
Hofer, T. ;
Holmgren, D. ;
Hong, Z. ;
Hoppe, E. ;
Hsu, L. ;
Huber, M. E. ;
Iyer, V. ;
Jardin, D. ;
Jastram, A. ;
Kelsey, M. H. ;
Kennedy, A. ;
Kubik, A. ;
Kurinsky, N. A. ;
Leder, A. ;
Loer, B. .
PHYSICAL REVIEW D, 2017, 95 (08)