Asymptotic behavior of solutions to a class of semilinear parabolic equations

被引:6
作者
Guo, Wei [1 ]
Wang, Xinyue [2 ]
Zhou, Mingjun [3 ]
机构
[1] Beihua Univ, Sch Math & Stat, Jilin 132013, Jilin, Peoples R China
[2] Jilin Univ, Affiliated Middle Sch, Expt Sch, Changchun 130021, Peoples R China
[3] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
convection; reaction; asymptotic behavior; CRITICAL FUJITA EXPONENTS; LARGE TIME BEHAVIOR; BLOW-UP; NEUMANN PROBLEM; HEAT-EQUATION; DEGENERATE; DOMAINS; THEOREMS;
D O I
10.1186/s13661-016-0578-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the asymptotic behavior of solutions to the homogeneous Neumann exterior problems of a class of semilinear parabolic equations with convection and reaction terms. The critical Fujita exponents theorems are established. It is shown that the global existence and blow-up of solutions depends on the reaction term, the convection term and the spatial dimension.
引用
收藏
页数:9
相关论文
共 20 条
[1]   A Fujita type result for a degenerate Neumann problem in domains with noncompact boundary [J].
Andreucci, D ;
Tedeev, AF .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 231 (02) :543-567
[2]   Large time behavior of solutions to the Neumann problem for a quasilinear second order degenerate parabolic equation in domains with noncompact boundary [J].
Andreucci, D ;
Cirmi, GR ;
Leonardi, S ;
Tedeev, AF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 174 (02) :253-288
[3]  
Azman I, 2015, ELECTRON J DIFFER EQ
[4]   The role of critical exponents in blow-up theorems: The sequel [J].
Deng, K ;
Levine, HA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 243 (01) :85-126
[5]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[6]  
Jin CH, 2014, DIFFER INTEGRAL EQU, V27, P643
[7]  
Kawohl, 2001, ADV MATH SCI APPL, V11, P113
[8]  
Levine HA, 2000, P ROY SOC EDINB A, V130, P591
[9]   THE ROLE OF CRITICAL EXPONENTS IN BLOWUP THEOREMS [J].
LEVINE, HA .
SIAM REVIEW, 1990, 32 (02) :262-288
[10]  
Mazón JM, 2013, ADV DIFFERENTIAL EQU, V18, P243