Spectral asymptotics of the Laplacian on supercritical bond-percolation graphs

被引:14
作者
Muller, Peter [1 ]
Stollmann, Peter
机构
[1] Univ Gottingen, Inst Theoret Phys, D-37077 Gottingen, Germany
[2] Tech Univ Chemnitz, Fak Math, D-09107 Chemnitz, Germany
关键词
laplacian; percolation; integrated density of states;
D O I
10.1016/j.jfa.2007.06.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate Laplacians on supercritical bond-percolation graphs with different boundary conditions at cluster borders. The integrated density of states of the Dirichlet Laplacian is found to exhibit a Lifshits tail at the lower spectral edge, while that of the Neumann Laplacian shows a van Hove asymptotics, which results from the percolating cluster. At the upper spectral edge, the behaviour is reversed. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:233 / 246
页数:14
相关论文
共 26 条
[1]  
[Anonymous], MATH PHYS ANAL GEOM
[2]   ENLARGEMENT OF OBSTACLES FOR THE SIMPLE RANDOM-WALK [J].
ANTAL, P .
ANNALS OF PROBABILITY, 1995, 23 (03) :1061-1101
[3]   Manifolds and graphs with slow heat kernel decay [J].
Barlow, M ;
Coulhon, T ;
Grigor'yan, A .
INVENTIONES MATHEMATICAE, 2001, 144 (03) :609-649
[4]   Random walks on supercritical percolation clusters [J].
Barlow, MT .
ANNALS OF PROBABILITY, 2004, 32 (04) :3024-3084
[5]   Long-time tails in the parabolic Anderson model with bounded potential [J].
Biskup, M ;
König, W .
ANNALS OF PROBABILITY, 2001, 29 (02) :636-682
[6]  
Chung F, 1997, C BOARD MATH SCI AM
[7]  
Chung F., 2000, COMMUN ANAL GEOM, V8, P969, DOI [DOI 10.4310/CAG.2000.V8.N5.A2, 10.4310/CAG.2000.v8.n5.a2]
[8]  
Colin de Verdiere Y, 1998, SPECTRES GRAPHES
[9]   Random walks on graphs with regular volume growth [J].
Coulhon, T ;
Grigoryan, A .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (04) :656-701
[10]   Ultracontractivity and Nash type inequalities [J].
Coulhon, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 141 (02) :510-539