Newtonian spaces: An extension of Sobolev spaces to metric measure spaces

被引:0
|
作者
Shanmugalingam, N [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies a possible definition of Sobolev spaces in abstract metric spaces, and answers in the affirmative the question whether this definition yields a Banach space. The paper also explores the relationship between this definition and the Hajlasz spaces. For specialized metric spaces the Sobolev embedding theorems are proven. Different versions of capacities are also explored, and these various definitions are compared. The main tool used in this paper is the concept of moduli of path families.
引用
收藏
页码:243 / 279
页数:37
相关论文
共 50 条
  • [1] A class of the Newtonian HK-Sobolev spaces on metric measure spaces
    Srivastava, H. M.
    Saha, Parthapratim
    Hazarika, Bipan
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (03)
  • [2] Grand Sobolev Spaces on Metric Measure Spaces
    Pavlov, S., V
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (05) : 956 - 966
  • [3] Weighted Sobolev spaces on metric measure spaces
    Ambrosio, Luigi
    Pinamonti, Andrea
    Speight, Gareth
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 746 : 39 - 65
  • [4] Grand Sobolev Spaces on Metric Measure Spaces
    S. V. Pavlov
    Siberian Mathematical Journal, 2022, 63 : 956 - 966
  • [5] Morrey-Sobolev Spaces on Metric Measure Spaces
    Lu, Yufeng
    Yang, Dachun
    Yuan, Wen
    POTENTIAL ANALYSIS, 2014, 41 (01) : 215 - 243
  • [6] A new approach to Sobolev spaces in metric measure spaces
    Sjodin, Tomas
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 142 : 194 - 237
  • [7] VARIABLE EXPONENT SOBOLEV SPACES ON METRIC MEASURE SPACES
    Harjuletho, Petteri
    Hasto, Peter
    Pere, Mikko
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2006, 36 (01) : 79 - 94
  • [8] Morrey-Sobolev Spaces on Metric Measure Spaces
    Yufeng Lu
    Dachun Yang
    Wen Yuan
    Potential Analysis, 2014, 41 : 215 - 243
  • [9] Fine properties of Newtonian functions and the Sobolev capacity on metric measure spaces
    Maly, Lukas
    REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (01) : 219 - 255
  • [10] Musielak-Orlicz-Sobolev spaces on metric measure spaces
    Ohno, Takao
    Shimomura, Tetsu
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (02) : 435 - 474