Semi-blind maximum likelihood separation of linear convolutive mixtures

被引:1
作者
Xavier, J [1 ]
Barroso, V [1 ]
机构
[1] Univ Tecn Lisboa, Ist Sistemas & Robot, Inst Super Tecn, P-1049001 Lisbon, Portugal
来源
PROCEEDINGS OF THE TENTH IEEE WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING | 2000年
关键词
D O I
10.1109/SSAP.2000.870138
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We address the problem of separating a linear convolutive mixture of 2nd order white sources, given some side information about the transmitted messages. The proposed technique exploits the special structure of the observed data matrix, after channel whitening: it is the product of an orthogonal and generalized Toeplitz matrices in additive Gaussian noise. We implement the joint maximum likelihood (ML) estimator of both the orthogonal mixing matrix and the user signals, subject to the known algebraic and temporal constraints. Preliminary computer simulations assess the promising performance of the proposed method.
引用
收藏
页码:329 / 333
页数:5
相关论文
共 50 条
[21]   Blind separation of convolutive mixtures by decorrelation [J].
Mei, TM ;
Yin, FL .
SIGNAL PROCESSING, 2004, 84 (12) :2297-2313
[22]   BLIND SOURCE SEPARATION FOR CONVOLUTIVE MIXTURES [J].
THI, HLN ;
JUTTEN, C .
SIGNAL PROCESSING, 1995, 45 (02) :209-229
[23]   Blind source separation of convolutive mixtures [J].
Makino, Shoji .
INDEPENDENT COMPONENT ANALYSES, WAVELETS, UNSUPERVISED SMART SENSORS, AND NEURAL NETWORKS IV, 2006, 6247
[24]   Blind separation of linear convolutive mixtures through parallel stochastic optimization [J].
Cohen, M ;
Cauwenberghs, G .
ISCAS '98 - PROCEEDINGS OF THE 1998 INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-6, 1998, :B17-B20
[25]   Semi-blind source separation using convolutive transfer function for nonlinear acoustic echo cancellation [J].
Cheng, Guoliang ;
Liao, Lele ;
Chen, Kai ;
Hu, Yuxiang ;
Zhu, Changbao ;
Lu, Jing .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 153 (01) :88-95
[26]   A new approach for blind separation of convolutive mixtures [J].
Acharyya, Ranjan ;
Ham, Fredric M. .
2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, :2075-2080
[27]   A MAXIMUM LIKELIHOOD "IDENTIFICATION-CORRECTION" SCHEME OF SUB-OPTIMAL "SEDJOCO" SOLUTIONS FOR SEMI-BLIND SOURCE SEPARATION [J].
Weiss, Amir ;
Yeredor, Arie ;
Cheema, Sher Ali ;
Haardt, Martin .
2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, :4158-4162
[28]   Blind separation of convolutive mixtures of speech signals using linear combination model [J].
Ohata, M ;
Mukai, T ;
Matsuoka, K .
ISSPA 2005: The 8th International Symposium on Signal Processing and its Applications, Vols 1 and 2, Proceedings, 2005, :33-36
[29]   On blind separation of convolutive mixtures of independent linear signals in unknown additive noise [J].
Tugnait, JK .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (11) :3117-3123
[30]   On blind separation of convolutive mixtures of independent linear signals in unknown additive noise [J].
Auburn Univ, Auburn, United States .
IEEE Trans Signal Process, 11 (3117-3123)