Effect of annealing time on different properties of the next generation Cu2Ni0.50Co0.50SnS4Thin films

被引:7
作者
Abali, Abdelaziz [1 ]
El Kissani, Abdelkader [1 ]
Drissi, Safia [1 ]
Lhaj, Driss Ait [1 ,2 ]
Elmassi, Said [1 ]
Amiri, Lhocin [1 ]
Nkhaili, Lahcen [1 ]
El Assali, Kassem [1 ]
Outzourhit, Abdelkader [1 ]
机构
[1] Cadi Ayyad Univ, Lab Mat Energy & Environm LMEE, PB 2390, Marrakech, Morocco
[2] Ibn Zohr Univ, Polydisciplinary Fac Ouarzazate, Mat & Energy Lab, Agadir, Morocco
关键词
Annealed samples - Annealing time - Dense surface - Effect of annealing - Glass substrates - Property - Scanning electrons - Synthesised - Thin-films - XRD spectra;
D O I
10.1051/epjap/2022220068
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this report, the Multifunctional Quinary Cu2Ni0.50Co0.50SnS4 synthesized by a cheap and easy-to-use technique using spin-coating on glass substrates. XRD spectra of Cu2Ni0.50Co0.50SnS4 annealing at 300 degrees C demonstrated the structure similar to that of Cu2NiSnS4 and Cu2CoSnS4 for 60 min and 90 min. The Raman scattering demonstrated the existence of Raman Cu2Ni0.50Co0.50SnS4 peaks positioned at 286 and 331 cm(-1) which allows us to tell the structure of Cu2Ni0.50Co0.50SnS4 similar only to Cu2NiSnS4. The EDS studies demonstrated a quasi-stoichiometry of the Cu2Ni0.50Co0.50SnS4 annealed sample with a low effect of annealing time on stoichiometry. The scanning electron microscope showed nearly uniform, dense and rough surface morphology with some voids. UV-visible-NIR spectroscopy revealed the gap energy of Cu2Ni0.50Co0.50SnS4 absorbent layers annealed at 300 degrees C for 60 min is 1.38 eV, which is very close to the optimal value of the solar spectrum signed by Shockley-Queisser. These results are ideally suited for low-cost, soil-abundant and non-toxic materials for photovoltaic applications.
引用
收藏
页数:5
相关论文
共 10 条
[1]   Preparation and characterization of Cu2CoSnS4 thin films for solar cells via co-electrodeposition technique: Effect of electrodeposition time [J].
Beraich, M. ;
Taibi, M. ;
Guenbour, A. ;
Zarrouk, A. ;
Boudalia, M. ;
Bellaouchou, A. ;
Tabyaoui, M. ;
Mansouri, S. ;
Sekkat, Z. ;
Fahoume, M. .
OPTIK, 2019, 193
[2]   Quaternary Cu2NiSnS4 thin films as a solar material prepared through electrodeposition [J].
Chen, Hui-Ju ;
Fu, Sheng-Wen ;
Tsai, Tsung-Chieh ;
Shih, Chuan-Feng .
MATERIALS LETTERS, 2016, 166 :215-218
[3]   Development of Cu2NiSnS4 based thin film solar cells without a sulfurization step [J].
Elhaj, D. Ait ;
El Kissani, A. ;
Elyaagoubi, M. ;
Dads, H. Ait ;
Welatta, F. ;
Nkhaili, L. ;
Chaib, H. ;
Outzourhit, A. .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2020, 107
[4]  
Kamble A., 2015, 2015 IEEE 42 PHOT SP, P6
[5]   Synthesis of Cu2NiSnS4 nanoparticles by hot injection method for photovoltaic applications [J].
Kamble, Anvita ;
Mokurala, Krishnaiah ;
Gupta, Aman ;
Mallick, Sudhanshu ;
Bhargava, Parag .
MATERIALS LETTERS, 2014, 137 :440-443
[6]   Influence of dipping cycles on physical, optical, and electrical properties of Cu2NiSnS4: Direct solution dip coating for photovoltaic applications [J].
Mokurala, Krishnaiah ;
Mallick, Sudhanshu ;
Bhargava, Parag ;
Siol, Sebastian ;
Klein, Talysa R. ;
van Hest, Maikel F. A. M. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 725 :510-518
[7]   Facile synthesis of sulfide-based chalcogenide as hole-transporting materials for cost-effective efficient perovskite solar cells [J].
Sanad, M. M. S. ;
Elseman, A. M. ;
Elsenety, M. M. ;
Rashad, M. M. ;
Elsayed, B. A. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (07) :6868-6875
[8]  
Shockley W., 1961, SHOCKLEY QUEISSER LI, P1
[9]   Flower-like Cu2NiSnS4 nanoparticles synthesized by a facile solvothermal method [J].
Wang, Tian-Xing ;
Li, Yan-Guo ;
Liu, Hai-Rui ;
Li, Hui ;
Chen, Si-Xiang .
MATERIALS LETTERS, 2014, 124 :148-150
[10]   Effect of dip-coating cycle on some physical properties of Cu2NiSnS4 thin films for photovoltaic applications [J].
Ziti, Ahmed ;
Hartiti, Bouchaib ;
Belafhaili, Amine ;
Labrim, Hicham ;
Fadili, Salah ;
Ridah, Abderraouf ;
Tahri, Mounia ;
Thevenin, Philippe .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (12) :16726-16737